Galoistheorie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien k [mm] \subseteq [/mm] E eine endliche Galioserweiterung, k [mm] \subseteq K_{i} \subseteq [/mm] E (i=1,2) Zwischenkörper und [mm] H_{i} [/mm] = [mm] Gal(E/K_{i}) \subseteq [/mm] Gal(E/k) =: G die korrespondierenden Untergruppen. Zeigen Sie: Für ein [mm] \sigma \in [/mm] G gilt [mm] \sigma(K_{1})=K_{2} [/mm] genau dann, wenn [mm] \sigma H_{1} \sigma^{-1} [/mm] = [mm] H_{2} [/mm] gilt. |
Hallo Leute,
die Richtung "=>" konnte ich bereits zeigen, allerdings habe ich nun Schwierigkeiten bei der Rückrichtung.
Sei also [mm] \sigma H_{1} \sigma^{-1} [/mm] = [mm] H_{2} [/mm] für ein [mm] \sigma \in [/mm] G.
Aus der Vorlesung weiß ich, dass gilt: [mm] K_{1} \subseteq K_{2} [/mm] <=> [mm] H_{2} \subseteq H_{1}
[/mm]
Ich hab versucht, damit [mm] \sigma(K_{1})=K_{2} [/mm] zu zeigen indem ich beide Inklusionen einzeln zeige. Allerdings bin ich mir dabei gar nicht sicher, ob ich das überhaupt anwenden kann, denn ich weiß doch a priori nicht, dass [mm] \sigma(K_{1}) [/mm] überhaupt ein Körper ist.
Auch wenn ich das mal ignoriere, so bringe ich trotzdem was falches raus.
Wäre nett, wenn mir hier jemand auf die Sprünge helfen könnte!
Liebe Grüße
Anfänger
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:31 Do 29.12.2011 | Autor: | felixf |
Moin Anfaenger!
> Seien k [mm]\subseteq[/mm] E eine endliche Galioserweiterung, k
> [mm]\subseteq K_{i} \subseteq[/mm] E (i=1,2) Zwischenkörper und
> [mm]H_{i}[/mm] = [mm]Gal(E/K_{i}) \subseteq[/mm] Gal(E/k) =: G die
> korrespondierenden Untergruppen. Zeigen Sie: Für ein
> [mm]\sigma \in[/mm] G gilt [mm]\sigma(K_{1})=K_{2}[/mm] genau dann, wenn
> [mm]\sigma H_{1} \sigma^{-1}[/mm] = [mm]H_{2}[/mm] gilt.
> Hallo Leute,
>
> die Richtung "=>" konnte ich bereits zeigen, allerdings
> habe ich nun Schwierigkeiten bei der Rückrichtung.
>
> Sei also [mm]\sigma H_{1} \sigma^{-1}[/mm] = [mm]H_{2}[/mm] für ein [mm]\sigma \in[/mm]
> G.
>
> Aus der Vorlesung weiß ich, dass gilt: [mm]K_{1} \subseteq K_{2}[/mm]
> <=> [mm]H_{2} \subseteq H_{1}[/mm]
>
> Ich hab versucht, damit [mm]\sigma(K_{1})=K_{2}[/mm] zu zeigen indem
> ich beide Inklusionen einzeln zeige. Allerdings bin ich mir
> dabei gar nicht sicher, ob ich das überhaupt anwenden
> kann, denn ich weiß doch a priori nicht, dass
> [mm]\sigma(K_{1})[/mm] überhaupt ein Körper ist.
Da [mm] $\sigma$ [/mm] ein injektiver Ringhomomorphismus ist muss [mm] $\sigma(K_1)$ [/mm] wieder ein Koerper sein. (Kann man recht einfach nachrechnen.)
> Auch wenn ich das mal ignoriere, so bringe ich trotzdem
> was falches raus.
Zur Aufgabe: Zeige, dass [mm] $Fix(\sigma H_1 \sigma^{-1}) [/mm] = [mm] \sigma(Fix(H_1))$ [/mm] ist (wobei zu einer Untergruppe $H$ die Menge $Fix(H) = [mm] \{ x \in E \mid \forall \tau \in H : \tau(x) = x \}$ [/mm] der Fixkoerper von $H$ ist), und verwende, dass [mm] $K_i$ [/mm] der Fixkoerper von [mm] $H_i$ [/mm] ist.
LG Felix
|
|
|
|
|
Hallo Felix!
Vielen Dank für die Antwort.
Ich hab jetzt ziemlich lange rumprobiert [mm] Fix(\sigma H_{1} \sigma^{-1}) [/mm] = [mm] \sigma(Fix(H_{1})) [/mm] zu zeigen, allerdings komm ich da auf keinen grünen Pfad.
Wäre nett, wenn du mir da noch ein wenig auf die Sprünge helfen könntest.
Liebe Grüße
Anfänger
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:37 Fr 30.12.2011 | Autor: | felixf |
Moin!
> Hallo Felix!
>
> Vielen Dank für die Antwort.
>
> Ich hab jetzt ziemlich lange rumprobiert [mm]Fix(\sigma H_{1} \sigma^{-1})[/mm]
> = [mm]\sigma(Fix(H_{1}))[/mm] zu zeigen, allerdings komm ich da auf
> keinen grünen Pfad.
>
> Wäre nett, wenn du mir da noch ein wenig auf die Sprünge
> helfen könntest.
Fuer $x [mm] \in [/mm] E$ gilt [mm] $\forall \tau \in H_1 [/mm] : [mm] (\sigma^{-1} \tau \sigma)(x) [/mm] = x$ genau dann, wenn [mm] $\forall \tau \in H_1 [/mm] : [mm] \tau(\sigma(x)) [/mm] = [mm] \sigma(x)$ [/mm] gilt.
Das stimmt so nicht ganz: Ok, daraus folgt dann [mm] $Fix(\sigma^{-1} H_1 \sigma) [/mm] = [mm] \sigma(Fix(H_1))$. [/mm] Damit ist in der Aufgabenstellung offenbar ein Fehler: es soll gezeigt werden, dass [mm] $\sigma(K_1) [/mm] = [mm] K_2$ [/mm] genau dann gilt, falls [mm] $\sigma^{-1} H_1\sigma [/mm] = [mm] H_2$ [/mm] ist.
Korrektur: das bedeutet, dass der Fixkoerper von [mm] $\sigma^{-1} H_1 \sigma$ [/mm] gleich [mm] $\{ x \in E \mid \sigma(x) \in Fix(H_1) \} [/mm] = [mm] \sigma^{-1}(Fix(H_1))$ [/mm] ist. Damit ist [mm] $Fix(\sigma^{-1} H_1 \sigma) [/mm] = [mm] \sigma^{-1}(Fix(H_1))$. [/mm] Und damit ist [mm] $Fix(\sigma H_1 \sigma^{-1}) [/mm] = [mm] \sigma(Fix(H_1))$, [/mm] wie ich das in der ersten Antwort geschrieben hab. Damit ist wieder alles (inkl. der Aufgabenstellung) in Ordnung!
LG Felix
|
|
|
|
|
Hallo,
danke für die schnelle Antwort!
Ich hatte schon die leise Ahnung, dass da irgendwas nicht stimmen kann.
Aber wenn man die Aufgabenstellung so abändert wie von dir vorgeschlagen, dann kann man die Richtung "=>" nicht mehr zeigen, da hier wichtig ist, in welcher Reihenfolge /sigma und [mm] /sigma^{-1} [/mm] stehen.
Da werde ich wohl bis nach den Ferien warten müssen, bis eine korrigierte Version des Blattes online ist.
Liebe Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:41 Fr 30.12.2011 | Autor: | felixf |
Moin,
Korrektur: das stimmt so nicht. Siehe den anderen editierten Beitrag von mir
> danke für die schnelle Antwort!
>
> Ich hatte schon die leise Ahnung, dass da irgendwas nicht
> stimmen kann.
> Aber wenn man die Aufgabenstellung so abändert wie von
> dir vorgeschlagen, dann kann man die Richtung "=>" nicht
> mehr zeigen, da hier wichtig ist, in welcher Reihenfolge
> /sigma und [mm]/sigma^{-1}[/mm] stehen.
Doch, auch fuer die Richtung [mm] "$\Rightarrow$" [/mm] brauchst du es genau umgekehrt.
Schreib doch mal auf, wie du die Richtung gezeigt hast.
LG Felix
|
|
|
|
|
Hallo Felix,
Dass gilt [mm] \sigma(K_{1}) [/mm] = [mm] K_{2} [/mm] => [mm] \sigma H_{1} \sigma^{-1} [/mm] = [mm] H_{2}
[/mm]
habe ich gezeigt, indem ich die beiden Inklusionen einzeln gezeigt habe.
zu [mm] "\supseteq": [/mm] Sei f [mm] \in H_{2}. [/mm] Schreibe f = [mm] \sigma (\sigma^{-1} [/mm] f [mm] \sigma) \sigma^{-1}. [/mm] Wenn ich jetzt zeige, dass [mm] \sigma^{-1} [/mm] f [mm] \sigma \in H_{1} [/mm] gilt, bin ich mit dieser Inklusion fertig.
Sei dazu x [mm] \in K_{1}. [/mm] Es gilt dann [mm] (\sigma^{-1} [/mm] f [mm] \sigma)(x) [/mm] = [mm] \sigma^{-1}( [/mm] f [mm] (\sigma(x))), [/mm] wobei [mm] \sigma(x) \in K_{2} [/mm] wegen [mm] \sigma(K_{1}) [/mm] = [mm] K_{2}
[/mm]
=> f [mm] (\sigma(x)) [/mm] = [mm] \sigma(x), [/mm] da f [mm] K_{2} [/mm] Homomorphismus.
Also ist [mm] \sigma^{-1}( [/mm] f [mm] (\sigma(x))) [/mm] = x und da x aus [mm] K_{1} [/mm] bel. folgt damit, dass [mm] \sigma^{-1} [/mm] f [mm] \sigma [/mm] ein [mm] K_{1}-Homomorphismus [/mm] ist und damit [mm] \sigma^{-1} [/mm] f [mm] \sigma \in H_{1}
[/mm]
Die andere Inklusion habe ich analog gemacht.
Liebe Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:15 Fr 30.12.2011 | Autor: | felixf |
Moin,
> Dass gilt [mm]\sigma(K_{1})[/mm] = [mm]K_{2}[/mm] => [mm]\sigma H_{1} \sigma^{-1}[/mm]
> = [mm]H_{2}[/mm]
> habe ich gezeigt, indem ich die beiden Inklusionen einzeln
> gezeigt habe.
>
> zu [mm]"\supseteq":[/mm] Sei f [mm]\in H_{2}.[/mm] Schreibe f = [mm]\sigma (\sigma^{-1}[/mm]
> f [mm]\sigma) \sigma^{-1}.[/mm] Wenn ich jetzt zeige, dass
> [mm]\sigma^{-1}[/mm] f [mm]\sigma \in H_{1}[/mm] gilt, bin ich mit dieser
> Inklusion fertig.
>
> Sei dazu x [mm]\in K_{1}.[/mm] Es gilt dann [mm](\sigma^{-1}[/mm] f
> [mm]\sigma)(x)[/mm] = [mm]\sigma^{-1}([/mm] f [mm](\sigma(x))),[/mm] wobei [mm]\sigma(x) \in K_{2}[/mm]
> wegen [mm]\sigma(K_{1})[/mm] = [mm]K_{2}[/mm]
> => f [mm](\sigma(x))[/mm] = [mm]\sigma(x),[/mm] da f [mm]K_{2}[/mm] Homomorphismus.
>
> Also ist [mm]\sigma^{-1}([/mm] f [mm](\sigma(x)))[/mm] = x und da x aus [mm]K_{1}[/mm]
> bel. folgt damit, dass [mm]\sigma^{-1}[/mm] f [mm]\sigma[/mm] ein
> [mm]K_{1}-Homomorphismus[/mm] ist und damit [mm]\sigma^{-1}[/mm] f [mm]\sigma \in H_{1}[/mm]
>
> Die andere Inklusion habe ich analog gemacht.
das ist ok so. Ich hab bemerkt, dass ich oben einen Fehler gemacht habe.
LG Felix
|
|
|
|
|
Ok, dann ist jetzt alles klar!
Vielen herzlichen Dank für deine Mühe!
Wünsche schon mal einen guten Rutsch und ein gutes neues Jahr!
Liebe Grüße
Anfänger
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:32 Sa 31.12.2011 | Autor: | felixf |
Moin,
> Vielen herzlichen Dank für deine Mühe!
bitte!
> Wünsche schon mal einen guten Rutsch und ein gutes neues
> Jahr!
Danke, das wuensch ich dir auch! Feier nicht zu heftig
LG Felix
|
|
|
|