www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieGamma-, Poissonverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Gamma-, Poissonverteilung
Gamma-, Poissonverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gamma-, Poissonverteilung: Idee
Status: (Frage) beantwortet Status 
Datum: 16:56 Fr 30.05.2014
Autor: Topologe

Aufgabe
Es sei X [mm] \sim \Gamma(n,\beta) [/mm] und Y [mm] \sim Pois(x\beta) [/mm] für n [mm] \in \IN [/mm] und x > 0. Zeigen Sie, dass

[mm] \IP(X \le x)=\IP(Y \ge [/mm] n).

Hinweis: Es gilt [mm] \Gamma(\alpha)=(\alpha-1)!. [/mm] Induktion nach n.

Hallo,

bei dieser Aufgabe komme ich nicht so richtig weiter..

Ich habe bis jetzt die Ansätze:

X [mm] \sim \Gamma(n,\beta) \Rightarrow [/mm] Dichtefunktion f(x)= [mm] \bruch{\beta^{n}}{\Gamma(n)}x^{n-1}e^{-\beta x}, [/mm] x [mm] \ge [/mm] 0, sowie 0, wenn x < 0

Verteilungsfunktion F(x)= Konnte ich mir noch nicht so richtig zusammenstellen

P(X [mm] \le [/mm] x)= F(x) - [mm] F(-\infty) [/mm]

Y [mm] \sim Pois(x\beta) \Rightarrow [/mm] Verteilungsfunktion [mm] F_{x\beta}(n)= e^{-x\beta}\summe_{k=0}^{n}\bruch{\lambda^{k}}{k!} [/mm]

P(Y [mm] \ge [/mm] n)= [mm] F(\infty)-F(n) [/mm] = 1-F(n)

Nur irgendwie weiss ich nicht so richtig weiter, wie man hier auch die Induktion zum laufen kriegt.
Würde mich über Rückmeldungen freuen!

LG :-)

        
Bezug
Gamma-, Poissonverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Mo 02.06.2014
Autor: blascowitz

Hallo und guten Abend,

fang doch erstmal damit an die Hinweise zu bearbeiten.

Zeige also zunächst [mm] $\Gamma(n)=(n-1)!$ [/mm] für $n [mm] \in \IN$. [/mm] Den Induktionsanfang mache ich dir mal vor, danach kannst du ja mal versuchen, den Induktionsschritt hinzubekommen.

n=1:

Sei $X [mm] \sim (1,\beta)$ [/mm] und $x>0$ fest. Weiter sei $Y [mm] \sim Poi(x\beta)$ [/mm]

[mm] $P(X\leq x)=\int\limits_{0}^{x}\beta \cdot e^{-\beta\cdot t} \; dt=-e^{-\beta\cdot x}+1=P(Y\geq [/mm] 1)=1-P(Y=0)$

Jetzt versuch mal, die Induktionsvoraussetzung und den induktionsschritt hinzubekommen.

Viele Grüße
Blasco

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]