www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenGanzrationale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Steckbriefaufgaben" - Ganzrationale Funktion
Ganzrationale Funktion < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzrationale Funktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:38 Mo 16.08.2010
Autor: Mathics

Aufgabe
Es handelt sich um eine ganzrationale Funktion 3. Grades, die die x-Achse im Ursprung berührt=. Die Tangente in P(-3|O) ist parallel zu y=6x.

Gib die ganzrationale Funktion an.

Die Ursprungsfunktion heißt ja:

[mm] f(x)=ax^3+bx^2+cx+d [/mm]

Die 1. Ableitung laute:

[mm] f'(x)=3ax^2+2bx+c [/mm]


Wir brauchen ja 4 Gleichungen, um die vier Variabelen herauszufinden.
Ich habe folgende vier herausgefunden:

f(0)=0  -> 0=d  (x-Achse wird ja im Ursprung berührt)
f'(0)=0  -> 0=c (x-Achse wird ja im Ursprung berührt und die Tangentensteigung beträgt da 0. Die erste Abletiung gibt die Steigung an, also 0)
f(-3)=0 -> 0=-27a+9b-3c+d (Tangente im Punkt P(-3|0)
f'(-3)=6 -> 6=27a-6b+c  (Tangente im Punkt P(-3|0) hat dieselbe Steigung für y=6x, also Steigung 6. Die erste Ableitung gibt die Steigung an, also 6.

Daraus resultiert die gleichrationale Funktion:
[mm] f(x)=-2/3x^3 [/mm] + [mm] 2x^2 [/mm]


ist das so richtig?
oder muss die letze Funktion f'(-3)=6x  6x=27a-6b+c   sein? oder ist f'(-3)=6 richtig??



LG

        
Bezug
Ganzrationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Mo 16.08.2010
Autor: M.Rex

Hallo

> Es handelt sich um eine ganzrationale Funktion 3. Grades,
> die die x-Achse im Ursprung berührt=. Die Tangente in
> P(-3|O) ist parallel zu y=6x.
>  
> Gib die ganzrationale Funktion an.
>  Die Ursprungsfunktion heißt ja:
>  
> [mm]f(x)=ax^3+bx^2+cx+d[/mm]
>  
> Die 1. Ableitung laute:
>  
> [mm]f'(x)=3ax^2+2bx+c[/mm]

So ist es.

>  
>
> Wir brauchen ja 4 Gleichungen, um die vier Variabelen
> herauszufinden.
>  Ich habe folgende vier herausgefunden:
>  
> f(0)=0  -> 0=d  (x-Achse wird ja im Ursprung berührt)

Okay

>  f'(0)=0  -> 0=c (x-Achse wird ja im Ursprung berührt und

> die Tangentensteigung beträgt da 0. Die erste Abletiung
> gibt die Steigung an, also 0)

Das stimmt auch

>  f(-3)=0 -> 0=-27a+9b-3c+d (Tangente im Punkt P(-3|0)

Die Gleichung stimmt, die Begründung so nicht ganz. P(-3/0) liegt auf f, also f(-3)=0. Das hat mit der Tangente erstmal nichts zu tun.

>  f'(-3)=6 -> 6=27a-6b+c  (Tangente im Punkt P(-3|0) hat

> dieselbe Steigung für y=6x, also Steigung 6. Die erste
> Ableitung gibt die Steigung an, also 6.

[daumenhoch]


>  
> Daraus resultiert die gleichrationale Funktion:
>  [mm]f(x)=-2/3x^3[/mm] + [mm]2x^2[/mm]
>
> ist das so richtig?

Das sieht gut aus.

>  oder muss die letze Funktion f'(-3)=6x  6x=27a-6b+c  
> sein? oder ist f'(-3)=6 richtig??

f'(-3)=6 ist korrekt, g(x)=6x hat ja die Steigung 6, nicht 6x

>  
>
>
> LG

Ein kleiner Tipp noch: Unter dem Schlagwort MBSteckbriefaufgaben findest du in der Mathebank eine Übersicht, was gegeben sein kann, und was das für die gesuchte Funktion f bedeutet.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]