Garbe;keime holomorpher fkt < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo, ich bin mittlerweile etwas durcheinander gekommen, ich hoffe, jemand kann mir da helfen.
Ich habe jetzt hier für eine Riemannsche Fläche M für offenes U [mm] \subset [/mm] M [mm] O(U)=\{holomorphe $Funktionen $auf $U\} [/mm] mit den Einschränkungshomomorphismen eine Garbe holomorpher Funktionen, woanders aber wird diese als Garbe der Keime holomorpher Funktionen bezeichnet, aber ich dachte, Keime holomorpher Funktionen wären Äquivalenzklassen bzgl der Relation auf [mm] \bigcup_{U\subset M offen; x in U}^{}O(U): [/mm] a [mm] \in [/mm] O(U) ist äquivalent zu b [mm] \in [/mm] O(V) , U,V sind offene Teilmengen von M und x [mm] \in [/mm] U, sowie x [mm] \in [/mm] V; wenn es eine offene Umgebung [mm] W\subset [/mm] U [mm] \cap [/mm] V gibt, x [mm] \in [/mm] W, s.d. [mm] a_{|W}=b_{|W}. [/mm] das ist doch dann nicht das selbe, oder?
[mm] O_x [/mm] bezeichnet die Menge aller Äquivalenzklassen im Punkt x.
Nun meine 2. Frage:
Hier wird definiert:
für u [mm] \in O_x [/mm] wählen wir ein f [mm] \in [/mm] O(U) mit [mm] f_{|x}=u [/mm] und setzen u(x):=f(x)
wie soll man das verstehen, das macht doch keinen Sinn, Punktauswertung von Äquivalenzklassen?
Ich hoffe, jemand kann mir da weiterhelfen.
Gruß, Schachtel5
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:03 Do 21.03.2013 | Autor: | felixf |
Moin!
> Hallo, ich bin mittlerweile etwas durcheinander gekommen,
> ich hoffe, jemand kann mir da helfen.
> Ich habe jetzt hier für eine Riemannsche Fläche M für
> offenes U [mm]\subset[/mm] M [mm]O(U)=\{holomorphe $Funktionen $auf $U\}[/mm]
> mit den Einschränkungshomomorphismen eine Garbe
> holomorpher Funktionen, woanders aber wird diese als Garbe
> der Keime holomorpher Funktionen bezeichnet, aber ich
> dachte, Keime holomorpher Funktionen wären
> Äquivalenzklassen bzgl der Relation auf [mm]\bigcup_{U\subset M offen; x in U}^{}O(U):[/mm]
> a [mm]\in[/mm] O(U) ist äquivalent zu b [mm]\in[/mm] O(V) , U,V sind offene
> Teilmengen von M und x [mm]\in[/mm] U, sowie x [mm]\in[/mm] V; wenn es eine
> offene Umgebung [mm]W\subset[/mm] U [mm]\cap[/mm] V gibt, x [mm]\in[/mm] W, s.d.
> [mm]a_{|W}=b_{|W}.[/mm] das ist doch dann nicht das selbe, oder?
Direkt das selbe sind sie nicht, aber im nicht direkten Sinne schon. Genauer: es gibt einen kanonischen Isomorphismus zwischen den beiden Objekten.
Die "Garbe der Keime holomorpher Funktionen" liefert ja auch fuer jede offene Menge $U$ eine Menge $O(U)$, die halt eine Familie von Keimen [mm] $(f_u)_{u\in U}$ [/mm] ist (mit [mm] $f_u \in O_u$), [/mm] die eine Bedingung erfuellen, naemlich dass es lokal die Restklassen von Elementen aus $O(V)$, $V [mm] \subseteq [/mm] U$ sind.
Diese Keime, die zu einer solchen Familie [mm] $(f_u)_{u\in U}$ [/mm] gehoeren, kannst du zu einer Funktion $f : U [mm] \to \IC$ [/mm] "zusammenkleben". Das ist dann das Element aus $O(U)$, was zu [mm] $(f_u)_{u\in U}$ [/mm] gehoert.
> [mm]O_x[/mm] bezeichnet die Menge aller Äquivalenzklassen im Punkt
> x.
> Nun meine 2. Frage:
> Hier wird definiert:
> für u [mm]\in O_x[/mm] wählen wir ein f [mm]\in[/mm] O(U) mit [mm]f_{|x}=u[/mm] und
> setzen u(x):=f(x)
> wie soll man das verstehen, das macht doch keinen Sinn,
> Punktauswertung von Äquivalenzklassen?
Nun, man muss schauen, ob es mit der Definition der Aequivalenzrelation vertraeglich ist. Und hier kann man das sehr einfach nachrechnen, wenn also $f$ und $g$ den gleichen Keim in [mm] $O_x$ [/mm] beschreiben, dann ist $f(x) = g(x)$.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:05 Mi 27.03.2013 | Autor: | Schachtel5 |
Hallo felixf,
danke dir, deine Erläuterungen haben mir sehr geholfen. Denke, dass ich mich mittlerweile einigermaßen da reinfinden kann.
Mfg, Schachtel5
|
|
|
|