www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGateauxidff-barkeit zweier Fkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Gateauxidff-barkeit zweier Fkt
Gateauxidff-barkeit zweier Fkt < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gateauxidff-barkeit zweier Fkt: Aufgabenhilfe
Status: (Frage) überfällig Status 
Datum: 08:31 Do 14.05.2009
Autor: Ultio

Aufgabe 1
Zeigen Sie, dass die durch
f(x,y) [mm] =\bruch{xy^{2}}{x^{2}+y{4}} [/mm] für (x,y) [mm] \not= [/mm] (0,0)
         = 0 für (x,y) = (0,0)
(Klammer und dann noch Bruch hat Formeleditor irritiert, daher die Form bitte entschuldigen)
definierte Funktion f: [mm] \IR^{2} [/mm] --> [mm] \IR [/mm] im Nullpunkt partielle Ableitungen in jede Richtung besitzt, aber dass [mm] h-->\partial [/mm] f(0) nicht linear ist und somit nicht Gateaux diff-bar, sowie f im Nullpunkt nicht stetig ist.

Aufgabe 2
Zeigen Sie, dass die durch
g(x,y) = [mm] \bruch{2x\wurzel[y^{2}]{e^{2}}}{x^{2}+\wurzel[y^{2}]{e}} [/mm]  für y [mm] \not= [/mm] 0
          = 0    sonst

definierte Funktion f: [mm] \IR^{2} [/mm] --> [mm] \IR [/mm] zwar im Nullpunkt Gateaux diff.-barist, aber dort trotzdem nicht stetig ist.

Aufgabe 3
Sei ein Banachraum X gegeben. Zeigen Sie, dass x--> [mm] \parallel [/mm] x [mm] \parallel^{p} [/mm] für jedes p > 1 Gateaux-diff.-bar im Nullpunkt ist.

Hallo,
Ich hab zwar ein paar Ideen, aber einiges Widerspricht sich mit der Aufgabe.
Könntet ihr das mal bitte korrigieren. Vielen Dank.

Aufgabe 1:
g(th) = [mm] \bruch{(th_1)*(th_2)^{2}}{(th_1)^{2} + (th_2)^{4}} [/mm] = [mm] \bruch{th_1h_2^{2}}{h_1+ (th_2)^{2}} \not= [/mm] t * f(h)

h(1,1), [mm] \partial_h [/mm] f(0,0) = 1/2
[mm] \partial_{e_{1}} [/mm] f(0,0) + [mm] \partial_{e_{2}} [/mm] f(0,0) ... = 0
daraus folgt doch, dass nicht gateaux-diff.-bar und nicht linear.
d.h. [mm] f(x+\lambda [/mm] y) [mm] \not= [/mm] f(x) + [mm] \lambda [/mm] f(y)

|f(x,y) - f(0,0)| = [mm] |\bruch{xy^{2}}{x^{2}+y{4}} [/mm] | = |x| [mm] \bruch{y^{2}}{x^{2}+y{4}} \le [/mm]  |x|
und
|f(x,y) - f(0,0)| = [mm] |\bruch{xy^{2}}{x^{2}+y{4}} [/mm] | = [mm] y^{2} \bruch{x}{x^{2}+y{4}} \le y^{2} [/mm]

wenn x gegen null dann acuh y gegen null damit (x,y) gegen (0,0) damit ist es stetig und das solls ja nicht sein.



Aufgabe 2:
h(1,1), [mm] \partial_h [/mm] f(0,0) = (2 * e) * [mm] (e)^{-1/2} [/mm]
[mm] \partial_{e_{1}} [/mm] f(0,0) + [mm] \partial_{e_{2}} [/mm] f(0,0) ... = 0
daraus folgt doch, dass nicht gateaux-diff.-bar und nicht linear.
d.h. [mm] f(x+\lambda [/mm] y) [mm] \not= [/mm] f(x) + [mm] \lambda [/mm] f(y)
WIDERSPRUCH ZUR AUFGABE



Aufgabe3:
f(x) = [mm] \parallel [/mm] x [mm] \parallel^{p} [/mm]
[mm] \parallel [/mm] x [mm] \parallel^{p} [/mm] = [mm] (\summe_{i=1}^{\infty} |x|^{p} )^{1/p} [/mm]
[mm] \partial_{h} [/mm] f(0,0,...,0) = 0
[mm] \partial_{e_{1}} [/mm] f(0,0,...,0) + [mm] \partial_{e_{2}} [/mm] f(0,0,...,0) ... = 0
Gateaux-diff.-bar.


Gruß Ultio

        
Bezug
Gateauxidff-barkeit zweier Fkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Mo 18.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]