www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGauß-Algorithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Gauß-Algorithmus
Gauß-Algorithmus < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauß-Algorithmus: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:06 Sa 07.02.2009
Autor: haZee

Aufgabe
Wenden sie das Gaußsche Eliminationsverfahren auf das Gleichungssystem
[mm] \vmat{ 1 & 2 & 1 & | & 4 \\ 1 & -1 & 1 & | & 5 \\ 2 & 3 & a & | & 1 } [/mm] an.
In Abhängigkeit von a untersuchen sie die Lösbarkeit des Systems und geben sie jeweils alle Lösungen [mm] \vec{x}=(x_{1},x_{2},x_{3})^{T} [/mm] an.

für 3a-6=0 hat das System keine Lösung.

für [mm] 3a-6\not=0 [/mm] ist das System lösbar und hat eine eindeutige Lösung:
[mm] \vec{x}=(3\bruch{1}{3}+\bruch{22}{3a-6}, \bruch{1}{3}, \bruch{-22}{3a-6})^{T} [/mm]

ist das richtig so?

        
Bezug
Gauß-Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Sa 07.02.2009
Autor: Steffi21

Hallo

[mm] \vmat{ 1 & 2 & 1 & 4 \\ 1 & -1 & 1 & 5 \\ 2 & 3 & a & 1} [/mm] wird zu

[mm] \vmat{ 1 & 2 & 1 & 4 \\ 0 & 3 & 0 & -1 \\ 0 & 1 & 2-a & 7} [/mm] wird zu

[mm] \vmat{ 1 & 2 & 1 & 4 \\ 0 & 3 & 0 & -1 \\ 0 & 0 & 3a-6 & -22} [/mm]


korrekt: für 3a-6=0 hat das System keine Lösung

[mm] x_3=-\bruch{22}{3a-6} [/mm] auch korrekt

[mm] x_2=-\bruch{1}{3} [/mm] hier hast du das minus verbasselt

[mm] x_1= [/mm] ändert sich geringfügig durch den Vorzeichenfehler in [mm] x_2 [/mm]

Steffi




Bezug
                
Bezug
Gauß-Algorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:30 Sa 07.02.2009
Autor: haZee

dankeschön.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]