www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungGaussche Normalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitsrechnung" - Gaussche Normalverteilung
Gaussche Normalverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaussche Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Di 15.09.2009
Autor: Dinker

Ein betonwerk legt das Rezept für eine Betonsorte fest. Sie darf "nie" eine Festigkeit aufweissen, die unter 65 N/mm2 liegt. (Jeder Einzelwert muss [mm] \ge [/mm] 65 N/mm2 sein.

Welcher Zielwert für die mittlere Festigkeit sollte angestrebt werden, wenn die Standartabweichung der Produktion [mm] \ge [/mm] 5N/mm2 ist?

(Hinweis: Gaussche Normalverteilung)

Ich frage mich gerade, ob die Aufgabe ein Täuschungsmanöver darstellt.

Denn es ist doch klar, dass ich einen Zielwert der mittleren Festigkeit von 70 N/mm2 brauche?

Nun eine 100% Sicherheit gibt es doch gar nicht, denn der Graph der Gaussche Normalverteilung erreicht doch gar nie die X-Achse?

Auch habe ich Probleme mit der Formel.

95% aller Werte liegen im Bereich : [mm] \mu\pm 2*\sigma [/mm]

Bei einem MIttelwert von 65N/mm2, was wäre diese Standartabweichung, in denen sich rund 85% der Messresultate befinden?

[mm] \mu [/mm] Wahrer MIttelwert.
[mm] \sigma: [/mm] Standartabweichung.

[mm] \sigma [/mm] Das verstehe ich nicht


        
Bezug
Gaussche Normalverteilung: nur ein "t"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:36 Mi 16.09.2009
Autor: Loddar

Hallo Dinker!


Das Wort "Standardabweichung" schreibt man nur mit einem "t"; und zwar unmittelbar hinter dem "S" zu Beginn.

Ansonsten gibt es nur weiche "d's". Schließlich reden wir hier nicht über []Standarten.


Gruß
Loddar


Bezug
        
Bezug
Gaussche Normalverteilung: Link
Status: (Antwort) fertig Status 
Datum: 01:50 Mi 16.09.2009
Autor: Loddar

Hallo Dinker!


Leider ist diese Beschreibung in der Aufgabenstellung mit "nie" nicht sehr präzise formuliert.

Ich selber würde dies nun so interpretieren, dass auch wirklich [mm] $\red{99{,}7\%}$ [/mm] aller Werte größer als die genannte Mindestfestigkeit [mm] $\beta_{\min} [/mm] \ = \ 65 \ [mm] \bruch{\text{N}}{\text{mm}^2}$ [/mm] sein soll.

Damit ergibt sich gemäß []dieser Angaben, dass für mittlere Druckfestigkeit [mm] $\mu$ [/mm] gelten muss:
[mm] $$\mu [/mm] \ - \ [mm] \red{3}*\sigma [/mm] \ [mm] \ge [/mm] \ [mm] \beta_{\min}$$ [/mm]
[mm] $$\gdw [/mm] \ [mm] \mu [/mm] \ [mm] \ge [/mm] \ [mm] \beta_{\min}+3*\sigma [/mm] \ = \ 65 \ [mm] \bruch{\text{N}}{\text{mm}^2}+3*5 [/mm] \ [mm] \bruch{\text{N}}{\text{mm}^2} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]