www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationGaußfunktion integrieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Gaußfunktion integrieren
Gaußfunktion integrieren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaußfunktion integrieren: Von -oo bis oo
Status: (Frage) beantwortet Status 
Datum: 20:36 Fr 02.05.2008
Autor: Murray

Hallo.

Ich bin momentan dabei das bestimmte Integral
[mm]\int_{-\infty}^{\infty} e^{-x^2}\, dx[/mm]
zu berechnen.

Dass man die Gaußfunktion nicht elementar integrieren kann ist mir klar, aber ich meine gelesen zu haben, dass man sie in den Grenzen integrieren kann und das dabei natürlich 1 heraus kommst. Soweit sogut. Nur wie genau integriert man die Funktion in ihren Grenzen?

Die möglich numerischer Integration finde ich nicht so "schön".

Wäre super wenn ihr mir helfen könnten.

lg Dominik

        
Bezug
Gaußfunktion integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Fr 02.05.2008
Autor: MathePower

Hallo Murray,

> Hallo.
>  
> Ich bin momentan dabei das bestimmte Integral
>  [mm]\int_{-\infty}^{\infty} e^{-x^2}\, dx[/mm]
>  zu berechnen.
>  
> Dass man die Gaußfunktion nicht elementar integrieren kann
> ist mir klar, aber ich meine gelesen zu haben, dass man sie
> in den Grenzen integrieren kann und das dabei natürlich 1
> heraus kommst. Soweit sogut. Nur wie genau integriert man
> die Funktion in ihren Grenzen?

Da gibt es einen Trick.

Berechne statt

[mm]\int_{-\infty}^{\infty} e^{-x^2}\, dx[/mm]

[mm]\left(\int_{-\infty}^{\infty} e^{-x^2}\, dx\right)^{2}=\int_{-\infty}^{\infty} e^{-x^2} \ dx \ \int_{-\infty}^{\infty} e^{-y^2}\ dy=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2-y^{2}} \ dx \ dy[/mm]

Führe man Polarkoordinaten ein:

[mm]x=r*\cos\left(\varphi\right)[/mm]
[mm]y=r*\sin\left(\varphi\right)[/mm]

So wird daraus:

[mm]\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2-y^{2}} \ dx \ dy=\int_{0}^{\infty} \int_{0}^{2 \pi} r*e^{-r^{2}} \ d\varphi \ dr[/mm]

Und das kann man jetzt berechnen.

>  
> Die möglich numerischer Integration finde ich nicht so
> "schön".
>  
> Wäre super wenn ihr mir helfen könnten.
>  
> lg Dominik

Gruß
MathePower

Bezug
                
Bezug
Gaußfunktion integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Fr 02.05.2008
Autor: Murray

Ich danke :) Jetzt ist mir auch genau klar wie man mit diesem Trick umgeht. ;)

Damit ist mein Problem gelöst. Polarkoordinaten sind eben ne tolle Sache.

lg Dominik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]