www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikGaussparameter
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stochastik" - Gaussparameter
Gaussparameter < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaussparameter: Ermittlung von Gaussparametern
Status: (Frage) beantwortet Status 
Datum: 12:25 Di 08.04.2008
Autor: chrisgruening

Aufgabe
Gegeben sind acht Wertepaare aus einer Gauß-Verteilten Grundmenge.

a) Schätzen Sie die Parameter [mm] \mu [/mm] und sigma der Gauß-Funktion
b) Ermitteln Sie die "besten" Parameter nach der Methode der kleinsten Fehlerquadrate


x      y
150 888
151,8 854
154,8 1648
156,2 2261
157,2 2105
159 1455
160,8 1018
162,8 942

Hallo Leute, hab da ein Problem mit einer Aufgabe aus einer alten Statistik-Klausur. Es sind acht Wertepaare gegeben, die eine repräsentative Stichprobe aus einer Gauß-Verteilten Menge entnommen sind. Hat jemand eine Idee? Das Schätzen ist ja nicht so schlimm, aber Teilaufgabe b) macht mir Probleme...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gaussparameter: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Di 08.04.2008
Autor: Martinius

Hallo,

deine Gauß-Funktion heißt ja

$f(x) = [mm] \bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x-\mu}{\sigma})^2}$ [/mm]

Daraus bildest Du nun deine Funktion der kleinsten Fehlerquadrate:

$S = [mm] \sum_{i=1}^{8} (y_i [/mm] - [mm] f(x_i))^2 [/mm] = [mm] \sum_{i=1}^{8} \left(y_i - \bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}\right)^2$ [/mm]

Diese Funktion musst Du nun partiell nach [mm] $\sigma$ [/mm] und [mm] $\mu$ [/mm] ableiten und diese Ableitungen gleich Null setzen. Aus diesen Bedingungen erhältst Du dann dein [mm] $\sigma$ [/mm] und dein [mm] $\mu$. [/mm]


Ich mache es dir einmal für einen Parameter vor:


[mm] $\bruch{\partial S}{\partial \mu} [/mm] = [mm] 2*\sum_{i=1}^{8} \left(y_i - \bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}\right)*\left(-\bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}\right)*\left(-\bruch{x_i-\mu}{\sigma} \right)*\left(\bruch{-1}{\sigma} \right)= [/mm] 0$

Wenn Du dir nun überlegst, welcher der Faktoren denn Null werden kann, kommst Du auf:

[mm] $\sum_{i=1}^{8}\left(\bruch{x_i-\mu}{\sigma} \right) [/mm] = 0$

, was bedeutet

[mm] $\sum_{i=1}^{8}x_i [/mm] = [mm] \sum_{i=1}^{8}\mu [/mm] = [mm] 8*\mu$ [/mm]

, also

[mm] $\mu [/mm] = [mm] \bruch{1}{8}\sum_{i=1}^{8}x_i [/mm] = 156,575$


Bei der Ableitung nach dem Parameter [mm] $\sigma$ [/mm] musst Du neben der Kettenregel auch die Produktregel benutzen:

[mm] $\bruch{\partial S}{\partial \sigma} [/mm] = [mm] 2*\sum_{i=1}^{8} \left(y_i - \bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}\right)*\left(\bruch{1}{\wurzel{2\pi}*\sigma^2}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}-\bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}*\left(-\bruch{x_i-\mu}{\sigma} \right)*\left(-\bruch{x_i-\mu}{\sigma^2} \right)\right)= [/mm] 0$

D. h., die Ableitung wird Null wenn

[mm] $\sum_{i=1}^{8} \bruch{1}{\sigma^2} [/mm] = [mm] \sum_{i=1}^{8} \bruch{1}{\sigma^4}*(x_i-\mu)^2$ [/mm]

[mm] $\sum_{i=1}^{8} \sigma^2 [/mm] = [mm] \sum_{i=1}^{8} (x_i-\mu)^2$ [/mm]

$8* [mm] \sigma^2 [/mm] = [mm] \sum_{i=1}^{8} (x_i-\mu)^2$ [/mm]

[mm] $\sigma [/mm] = [mm] \wurzel{\bruch{1}{8}*\sum_{i=1}^{8} (x_i-\mu)^2}=4,065$ [/mm]

So ich mich nicht verrechnet habe.

LG, Martinius




P.S. Es wäre eigentlich korrekt, deine Funktion als noch von einem Parameter a abhängig darstellen:

$y(x) = [mm] \bruch{a}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x-\mu}{\sigma})^2}$ [/mm]

Dementsprechend deine Fehlerfunktion:

[mm] $S(\mu, \sigma, [/mm] a) = [mm] \sum_{i=1}^{8} (y_i [/mm] - [mm] f(x_i))^2 [/mm] = [mm] \sum_{i=1}^{8} \left(y_i - \bruch{a}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}\right)^2$ [/mm]

Wenn Du noch den Parameter a ermitteln willst, leitest Du wie gehabt partiell nach a ab und erhältst dann

$y(x) [mm] \approx 21101*\bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x-\mu}{\sigma})^2}$ [/mm]




Bezug
                
Bezug
Gaussparameter: Super
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:37 Mi 09.04.2008
Autor: chrisgruening

Vielen DANK für die schnelle Antwort!!! Das hilft mir doch schonmal sehr weiter :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]