www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenGaußsche Algorithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Steckbriefaufgaben" - Gaußsche Algorithmus
Gaußsche Algorithmus < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaußsche Algorithmus: ganzrationale Funktion
Status: (Frage) beantwortet Status 
Datum: 21:22 Mo 16.01.2006
Autor: MIB

Aufgabe
Finden Sie eine ganzrationale Funktion dritten Grades, deren Graph durch den Ursprung verläuft und die einen Wendepunkt bei W(-1/-7) besitzt, in dem die Steigung 6 beträgt. Lösen Sie mit Hilfe des Gaußschen Algorithmus.

Hallo,

wollte wissen, ob das so stimmt.

Ich habe mir zuerst überlegt, da es sich ja um eine Funtkion 3 handelt, die durch den Ursprung geht, muss es [mm] x^3 [/mm] sein.

Dann macht man f(x), macht die 1. und 2. Ableitung

Danach macht man Gauß und kommt zum Ergebnis:

f(x) = [mm] x^3 [/mm] + [mm] 3x^2 [/mm] + 9x

Kommt jemand auf dieses Ergebnis, wenn nicht führe ich noch näher aus.

DANKE

        
Bezug
Gaußsche Algorithmus: Stimmt!
Status: (Antwort) fertig Status 
Datum: 21:31 Mo 16.01.2006
Autor: Loddar

Hallo MIB!


[daumenhoch] Das Ergebnis kann ich bestätigen, das habe ich auch erhalten!


Gruß
Loddar


Bezug
                
Bezug
Gaußsche Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Mo 16.01.2006
Autor: MIB

Hallo Loddar,

vielen Dank für die schnelle Antwort.

Wollte wissen ob es noch eine andere, schnellere Möglichkeit gibt, diese Aufgabe zu lösen, oder muss man das so machen, wie ich es beschrieben habe?

DANKE

Bezug
                        
Bezug
Gaußsche Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Di 17.01.2006
Autor: Kuebi

Hallo du!
  

> Wollte wissen ob es noch eine andere, schnellere
> Möglichkeit gibt, diese Aufgabe zu lösen, oder muss man das
> so machen, wie ich es beschrieben habe?

Für dein spezielles Problem bietet sich am sinnvollsten die Interpolation (das Verfahren wie du es gemacht hast) an. D.h., zu n+1 gefundenen Bedingungen die die Funktion erüllen soll, ein Polynom n-ten Grades aufzustellen.

Weitere Möglichkeiten zur (näherungsweisen) Bestimmungen wären die Taylor-Entwicklung oder die lineare oder quasilineare Regression. (Begriffe zum Nachschlagen! ;-) )

Da du aber mit größer Wahrscheinlichkeit immer wieder auf Aufgaben des Typs hier stößt, wird das Verfahren immer dasselbe bleiben.

Ich nehme an, dass du in der Schule keine Taylor-Entwicklungen und nur am Rande Regressionen durchführen wirst.

Okay?

Vlg, Kübi


Bezug
                                
Bezug
Gaußsche Algorithmus: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Di 17.01.2006
Autor: MIB

Alles klar, dann bleibe ich lieber beim Gauß


DANKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]