Gaußscher Integralsatz (Ebene) < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:31 Sa 15.06.2013 | Autor: | acid |
Hallo,
es geht um den Gaußschen Integralsatz im [mm] \IR^2. [/mm] Der ist (in der Vorlesung) so definiert worden:
[mm]\oint_{\delta G} \vec v \cdot d \vec s = \iint_G \left( D_1 v_2 - D_2 v_1 \right) \left( x, y \right) d\left( x, y \right)[/mm], wobei [mm]\vec v = (v_1, v_2)[/mm] ein Vektorfeld ist. Ich kann mir darunter nur schwer etwas vorstellen und hätte ein paar Verständnisfragen. Würde mir bestimmt sehr weiterhelfen, wenn mir die jemand beantworten könnte:
1. Im Internet habe ich bis jetzt eigentlich nur diese Definition gefunden:
[mm]\int_B div f d(x, y) = \int_{\delta B} f \cdot v \cdot ds[/mm], wobei f das Vektorfeld und v die äußere Normale ist.
Mich wundert dieses [mm]D_1 v_2 - D_2 v_1[/mm] in der ersten Definition. Kann mir jemand sagen, wo das herkommt? Bei div denke ich eher an [mm]D_1 v_1 + D_2 v_2[/mm].
2. Bei der Divergenz kann man sich ja vorstellen, dass man ein Vektorfeld (z.B. eine Strömung) hat und die Divergenz dann an jedem Punkt angibt, wie viel mehr rein als rausfließt. Mit der Definition oben würde man das ja dann direkt mit dem Kurvenintegral verknüpfen. Ist das gerade das, was dieser Satz aussagt? Dass man von einer "umgebenden Kurve" auf die Divergenz darin schließen kann? Oder habe ich da etwas falsch verstanden?
3. Wo kann man den Satz überhaupt anwenden? Wenn [mm]\int_{\delta G} \vec v d \vec s[/mm] zu bestimmen ist, aber das Doppelintegral einfacher zu berechnen ist?
Viele Grüße
acid
|
|
|
|
> 1. Im Internet habe ich bis jetzt eigentlich nur diese
> Definition gefunden:
> [mm]\int_B div f\, d(x, y) = \int_{\delta B} f \cdot v \cdot ds[/mm],
> wobei f das Vektorfeld und v die äußere Normale ist.
>
> Mich wundert dieses [mm]D_1 v_2 - D_2 v_1[/mm] in der ersten
> Definition. Kann mir jemand sagen, wo das herkommt? Bei div
> denke ich eher an [mm]D_1 v_1 + D_2 v_2[/mm].
Guten Tag !
Dieser Unterschied in den Formeln hat damit zu tun,
dass in der einen (im Internet gefundenen) der
äußere Normalenvektor, in der anderen aber der
Tangentialvektor der Randkurve benützt wird.
Im Klartext: das vektorielle Differential [mm] \overrightarrow{ds}
[/mm]
steht eigentlich für
[mm] $\overrightarrow{ds}\ [/mm] =\ [mm] \overrightarrow{t}*ds$
[/mm]
wobei [mm] \overrightarrow{t} [/mm] der in Umlaufsrichtung zeigende
Tangential-Einheitsvektor der Randkurve [mm] $\delta [/mm] B$ ist.
Für diesen gilt:
[mm] $\overrightarrow{t}\ [/mm] =\ [mm] \pmat{t_x\\t_y}\ [/mm] =\ [mm] \pmat{-n_y\\n_x}$
[/mm]
Dabei sei [mm] $\overrightarrow{n}\ [/mm] =\ [mm] \pmat{n_x\\n_y}$ [/mm] der äußere
Normalen-Einheitsvektor, den du (etwas verwirrlich
in dem Zusammenhang, wo in der anderen Darstellung
v für das Vektorfeld steht) mit v bezeichnet hast.
LG , Al-Chwarizmi
Bemerkung:
Im Übrigen ist mir nicht klar, was in deiner Darstellungs-
weise die [mm] D_1 [/mm] und [mm] D_2 [/mm] eigentlich genau bedeuten sollen ...
|
|
|
|