www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGebietsintegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Gebietsintegration
Gebietsintegration < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebietsintegration: welche Grenzen
Status: (Frage) beantwortet Status 
Datum: 15:52 Mi 02.07.2008
Autor: crashby

Aufgabe
Berechnen Sie:

$ [mm] \integral\integral_{G}{x\cdot y^2 dG} [/mm] $ mit
[mm] $G=\{(x,y)\in \IR^2:x+y\le1 \wedge x\ge 0 \wedge y\ge 0\}\subset\IR^2 [/mm] $

Hey Leute,

ich weiß nicht so richtig welche Grenzen ich hier nehmen soll.
Kann mir wer einen Tipp geben ?

lg crush

        
Bezug
Gebietsintegration: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Mi 02.07.2008
Autor: XPatrickX


> Berechnen Sie:
>  
> [mm]\integral\integral_{G}{x\cdot y^2 dG}[/mm] mit
>  [mm]G=\{(x,y)\in \IR^2:x+y\le1 \wedge x\ge 0 \wedge y\ge 0\}\subset\IR^2[/mm]
>  
> Hey Leute,
>  
> ich weiß nicht so richtig welche Grenzen ich hier nehmen
> soll.
>  Kann mir wer einen Tipp geben ?
>  
> lg crush


Hi,


aus [mm] x\ge [/mm] 0 [mm] \wedge y\ge [/mm] 0 folgt, dass beide unteren Grenzen Null sind. Desweiteren gilt: [mm] x+y\le [/mm] 1 also x [mm] \le [/mm] 1-y. Also ist 1-y deine obere Grenzen, wenn du nach x integrierst. Daraus folgt dann außerdem: 0 [mm] \le [/mm] 1-y [mm] \gwd [/mm] y [mm] \le [/mm] 1. Somit ist 1 die obere Grenze für die Integration nach y.

Gruß Patrick


Bezug
                
Bezug
Gebietsintegration: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Mi 02.07.2008
Autor: crashby

Hey Patrick,

vielen Dank, beim Fussball ist mir es eben auch eingefallen :-)

Na dann werde ich ma lgucken ob ich es hinbekomme und dann wieder posten.
edit:

So hab mal bissel gerechnet:

Wenn ich mich nicht verrechnet habe bekomme ich das hier raus:

$ [mm] \integral_{0}^{1-y} \left(\integral_{0}^{1}{x\cdot y^2 dx\right)dy}=\frac{(1-y)^3}{6} [/mm] $

Kann das wer bestätigen ?

lg George

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]