www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGebrochen rationale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Gebrochen rationale Funktion
Gebrochen rationale Funktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochen rationale Funktion: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 10:08 So 15.04.2012
Autor: Fenomenom

Aufgabe
f(x)= 2x²/(x-1)

Ich bitte darum meine Ableitungen zu korrigieren:

f´(x) = 2x²-4x/(x-1)²

f´´(x) = [mm] -10x²-4/(x-1)^4 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gebrochen rationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 So 15.04.2012
Autor: angela.h.b.


> f(x)= 2x²/(x-1)
>  Ich bitte darum meine Ableitungen zu korrigieren:
>  
> f´(x) = [mm] \red{(}2x²-4x\red{)}/(x-1)² [/mm]

Hallo,

[willkommenmr].

Mit den eingefügten Klammern ist's richtig.

>  
> f´´(x) = [mm]-10x²-4/(x-1)^4[/mm]

Hier solltest Du nochmal nachrechnen.

LG Angela

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Bezug
                
Bezug
Gebrochen rationale Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:23 So 15.04.2012
Autor: Fenomenom

Also wenn
f´(x) = (2x²-4x) / (x-1)² stimmt, dann ist

u´= 4x-4 und
v´= 2(x-1)²+1

Ist das richtig?

Bezug
                        
Bezug
Gebrochen rationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 So 15.04.2012
Autor: angela.h.b.


> Also wenn
> f´(x) = (2x²-4x) / (x-1)² stimmt, dann ist
>  
> u´= 4x-4 und
> v´= 2(x-1)²+1
>  
> Ist das richtig?



nein, jedenfalls nicht, wenn u und v bei Dir das sind, was ich mir zusammenreime - verraten tust Du's uns ja nicht.

Mit
[mm] u=2x^2-4x [/mm] und [mm] v=(x-1)^2 (=x^2-2x+1) [/mm]
bekommt man
u'=4x-4=4(x-1) und v'=2(x-1).

Falls Dir das nach etwas Nachdenken immer noch unklar ist, solltest Du mal sagen, nach welchen Regeln Du die Ableitung von v gebildet hast.

LG Angela




Bezug
                                
Bezug
Gebrochen rationale Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 So 15.04.2012
Autor: Fenomenom

Ja das verwirrt mich tatsächlich.

Bei u habe ich einfach die Potenz- und Faktorenregel angewandt, deshalb komme ich da auf 4x-4

Und bei v muss ich doch die innere und äußere Ableitung getrennt machen, deshalb 2(x-1)+1

Bezug
                                        
Bezug
Gebrochen rationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 So 15.04.2012
Autor: angela.h.b.


> Ja das verwirrt mich tatsächlich.
>  
> Bei u habe ich einfach die Potenz- und Faktorenregel
> angewandt, deshalb komme ich da auf 4x-4
>  
> Und bei v muss ich doch die innere und äußere Ableitung
> getrennt machen,

Hallo,

schreib ruhig immer nochmal hin, worüber Du redest.

Wir wollen ableiten v=(x-1).^2
In der Tat geht das mit der Kettenregel, sofern ma es sich nicht als [mm] v=x^2-2x+1 [/mm] schreibt.

> deshalb [mm] \red{v'}=2(x-1)+1 [/mm]

Nein. Kettenregel: "äußere mal innere Ableitung".

LG Angela







Bezug
                                                
Bezug
Gebrochen rationale Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 So 15.04.2012
Autor: Fenomenom

Ah da ist mein Fehler. Ich kann die Kettenregel nicht auswendig.
Danke, ich versuche es erneut und gebe dann noch mal mein Ergebnis durch.

Bezug
                                                
Bezug
Gebrochen rationale Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 So 15.04.2012
Autor: Fenomenom

So nun hab ich es noch mal probiert und habe

f´´(x) = 4 / (x-1)³

Ist das richtig?

Bezug
                                                        
Bezug
Gebrochen rationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 So 15.04.2012
Autor: Steffi21

Hallo jetzt ist die 2. Ableitung korrekt, Steffi

Bezug
                                                                
Bezug
Gebrochen rationale Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 So 15.04.2012
Autor: Fenomenom

Super. Dankeschön :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]