www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGebrochene Ideale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Gebrochene Ideale
Gebrochene Ideale < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochene Ideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 So 12.09.2010
Autor: Arcesius

Hallo Leute!

Ich habe eine Frage bezüglich der gebrochenen Ideale...

Die sind ja gerade die [mm]\mathbb{Z}[/mm]-module in einem Zahlkörper [mm]K[/mm], die [mm]\mathcal{O}_{K}[/mm] als assoziierte Ordnung haben. (Ich bezeichne einen gebrochenen Ideal im Folgenden mit [mm]\mathfrak{a}[/mm]).

Also [mm]\mathcal{O}_{\mathfrak{a}} = \lbrace \omega \in K \mid \omega\mathfrak{a} \subset \mathfrak{a}\rbrace \overset{!}{=} \mathcal{O}_{K}[/mm].

Das bedeutet doch, dass [mm]\mathcal{O}_{K}\mathfrak{a} \subset \mathfrak{a}[/mm] und [mm]\alpha\mathfrak{a} \not\subset \mathfrak{a} \quad \forall \alpha \notin \mathcal{O}_{K}[/mm].

Gut.. jetzt aber.
"Die gebrochene Ideale, die in [mm]\mathcal{O}_{K}[/mm] enthalten sind, sind die üblichen nicht-Null-ideale".

Dass aber die ideale in [mm]\mathcal{O}_{K}[/mm] enthalten sind, und nicht ideale VON [mm]\mathcal{O}_{K}[/mm] sind, bedeutet doch, dass es ideale von [mm]K[/mm] sein müssten.. (aber [mm]K[/mm] Körper somit nur ideale (0) und (1)..).

Darum meine Frage.. handelt es sich hier wieder um eine unglückliche Bezeichnung für diese [mm]\mathfrak{a}[/mm]? Also ich meine jetzt die Bezeichnung "Ideale".. sind sie überhaupt Ideale?

Danke für eine Antwort :)

Gr

        
Bezug
Gebrochene Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 12.09.2010
Autor: felixf

Moin!

> Die sind ja gerade die [mm]\mathbb{Z}[/mm]-module in einem
> Zahlkörper [mm]K[/mm], die [mm]\mathcal{O}_{K}[/mm] als assoziierte Ordnung
> haben. (Ich bezeichne einen gebrochenen Ideal im Folgenden
> mit [mm]\mathfrak{a}[/mm]).
>
> Also [mm]\mathcal{O}_{\mathfrak{a}} = \lbrace \omega \in K \mid \omega\mathfrak{a} \subset \mathfrak{a}\rbrace \overset{!}{=} \mathcal{O}_{K}[/mm].
>
> Das bedeutet doch, dass [mm]\mathcal{O}_{K}\mathfrak{a} \subset \mathfrak{a}[/mm]
> und [mm]\alpha\mathfrak{a} \not\subset \mathfrak{a} \quad \forall \alpha \notin \mathcal{O}_{K}[/mm].

Genau.

> Gut.. jetzt aber.
> "Die gebrochene Ideale, die in [mm]\mathcal{O}_{K}[/mm] enthalten
> sind, sind die üblichen nicht-Null-ideale von [mm]\red{\mathcal{O}_K}[/mm]".

Das rote hab ich eingefuegt, damit wird die Aussage etwas praeziser.

> Dass aber die ideale in [mm]\mathcal{O}_{K}[/mm] enthalten sind, und
> nicht ideale VON [mm]\mathcal{O}_{K}[/mm] sind,

Wie kommst du auf letzteres? Es ist sehr wohl gemeint, dass es [mm]\mathcal{O}_K[/mm]-Ideale sind. [mm]K[/mm]-Ideale gibt es (wie du richtig bemerkst) viel zu wenige, als das man sich fuer solche interessiert.

> Darum meine Frage.. handelt es sich hier wieder um eine
> unglückliche Bezeichnung für diese [mm]\mathfrak{a}[/mm]? Also ich
> meine jetzt die Bezeichnung "Ideale".. sind sie überhaupt
> Ideale?

Der Satz ist nicht optimal formuliert, man haette das [mm]\mathcal{O}_K[/mm] (wie ich es oben getan hab) an der richtigen Stelle einsetzen sollen.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]