www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGebrochenrationale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Gebrochenrationale Funktion
Gebrochenrationale Funktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochenrationale Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Mo 29.01.2007
Autor: Loon

Aufgabe
Ein Supermarkt führt eine neue Zahnpasta ein. In den ersten fünf Wochen ergeben sich folgende wöchentliche Verkaufszahlen:

Verkaufswoche                1               2               3               4               5
verkaufte Stückzahl         26             46            60              76             86

In einem Modell beschreibt die Funktion f der Form f(x) = [mm] \bruch{ax+15}{bx+15} [/mm] , x größer gleich 0 die verkaufte Stückzahl f(x) innerhalb der Woche x.

a.) Bestimmen Sie a und b anhand der Werte der 1. und 5. Woche. Zeichnen Sie das Schaubild K der Funktion f für das erste Jahr. Wie entwickeln sich nach diesem Modell die wöchentlichen Verkaufszahlen während eds ersten Jahres? Nennen Sie mögliche Gründe für diese Entwicklung.

b) Bestimmen Sie näherungsweise wie viele Tuben Zahnpasta der Supermarkt A in den ersten 52 Wochens insgesamt verkauft. Nach wie vielen Wochen sind insgesamt mehr als 1500 Tuben verkauft?

c) Gleichzeitig mit dem Supermarkt A bringt der Supermarkt B ein Konkurrenzprodukt auf den Markt. Seine wöchentlichen Verkaufszahlen lassen sich modellhaft durch die Funktion g mit g(x) = 214 - 214e^-0.08x beschreiben. Zeichnen Sie das Schaubild C dieser Funktion in das Koordinatensystem von Teilaufgabe a) ein. Mit welchen wöchentlichen Verkaufszahlen kann der Supermarkt B langfristig rechnen? Wann hat der Supermarkt A den größten Vorsprung an insgesamt verkauften Tuben? Beschreiben Sie, wie sich anhand der Schaubilder abschätzen lässt, bis zu welchem Zeitpunkt in beiden Supermärkten etwa gleich viele Tuben verkauft sind?

Hallo,

Ich habe bei Aufgabe a) zunächst die Werte aus der Tabelle in die Funktionsgleichung eingesetzt und anschließend in den GTR eingegeben, um das Ergebnis zu erhalten. Allerdings rechnet der Taschenrechner kein Ergebis für diese Aufgabe aus, von daher weiß ich nicht, wie ich weiterrechnen soll.
Für Aufgaben b) und c) finde ich überhaupt keinen Ansatz,....
Ich freue mich über jeden Tipp!
Danke,
Loon






        
Bezug
Gebrochenrationale Funktion: Einstieg
Status: (Antwort) fertig Status 
Datum: 18:54 Mo 29.01.2007
Autor: informix

Hallo Loon,

> Ein Supermarkt führt eine neue Zahnpasta ein. In den ersten
> fünf Wochen ergeben sich folgende wöchentliche
> Verkaufszahlen:
>  
> [mm] \begin{array}{c|c|c|c|c|c|}\text{Verkaufswoche}&1&2&3&4&5\\\hline \text{verkaufte Stückzahl}&26&46&60&76&86\end{array} [/mm]
>  
> In einem Modell beschreibt die Funktion f der Form f(x) =
> [mm]\bruch{ax+15}{bx+15}[/mm] , x größer gleich 0 die verkaufte
> Stückzahl f(x) innerhalb der Woche x.
>  
> a.) Bestimmen Sie a und b anhand der Werte der 1. und 5.
> Woche. Zeichnen Sie das Schaubild K der Funktion f für das
> erste Jahr. Wie entwickeln sich nach diesem Modell die
> wöchentlichen Verkaufszahlen während eds ersten Jahres?
> Nennen Sie mögliche Gründe für diese Entwicklung.
>

Betrachte die Tabelle als eine Art Wertetabelle:
f(1)=26 und f(5)=86
Aus diesen beiden Gleichungen kannst du a und b bestimmen.

Kommst du jetzt allein weiter?

> b) Bestimmen Sie näherungsweise wie viele Tuben Zahnpasta
> der Supermarkt A in den ersten 52 Wochens insgesamt
> verkauft. Nach wie vielen Wochen sind insgesamt mehr als
> 1500 Tuben verkauft?
>  
> c) Gleichzeitig mit dem Supermarkt A bringt der Supermarkt
> B ein Konkurrenzprodukt auf den Markt. Seine wöchentlichen
> Verkaufszahlen lassen sich modellhaft durch die Funktion g
> mit g(x) = 214 - 214e^-0.08x beschreiben. Zeichnen Sie das
> Schaubild C dieser Funktion in das Koordinatensystem von
> Teilaufgabe a) ein. Mit welchen wöchentlichen
> Verkaufszahlen kann der Supermarkt B langfristig rechnen?
> Wann hat der Supermarkt A den größten Vorsprung an
> insgesamt verkauften Tuben? Beschreiben Sie, wie sich
> anhand der Schaubilder abschätzen lässt, bis zu welchem
> Zeitpunkt in beiden Supermärkten etwa gleich viele Tuben
> verkauft sind?
>  Hallo,
>
> Ich habe bei Aufgabe a) zunächst die Werte aus der Tabelle
> in die Funktionsgleichung eingesetzt und anschließend in
> den GTR eingegeben, um das Ergebnis zu erhalten. Allerdings
> rechnet der Taschenrechner kein Ergebis für diese Aufgabe
> aus, von daher weiß ich nicht, wie ich weiterrechnen soll.
> Für Aufgaben b) und c) finde ich überhaupt keinen
> Ansatz,....

Vielleicht denkst du mal einfach mit einem Bleistift in der Hand?
Ich setze keinen GTR ein, kann dir damit also nicht weiterhelfen... ;-)

>  Ich freue mich über jeden Tipp!
>  Danke,
> Loon
>  


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]