www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGebrochenrationale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Rationale Funktionen" - Gebrochenrationale Funktion
Gebrochenrationale Funktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochenrationale Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:07 So 28.09.2008
Autor: missjanine

Aufgabe
Für jedes t>0 ist eine Funktion f, gegeben durch [mm] ft(x)=\bruch{8x-4t}{x}. [/mm] Ihr Graph sei Kt.

a) Wie kann ich Graphen Kt von verschiedenen Funktionen mit verschiedenen Werten von t in einem eigenen Intervall 1 mit meinem GTR zeichnen?
b) Wie führe ich eine Funktionsuntersuchung durch?
c) Wie erhalte ich die Ortslinie der Hochpunkte von Kt?
d) Es sei N der Schnittpunkt von K2 mit der x-Achse und P(u/v) mit u>1 ein Punkt auf K2. Die Punkte N, P und Q (u/0) sind die Eckpunkte eines Dreiecks. Für welchen Wert von u wird der Flächeninhalt dieses Dreiecks extremal?

        
Bezug
Gebrochenrationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:46 Mo 29.09.2008
Autor: angela.h.b.


> Für jedes t>0 ist eine Funktion f, gegeben durch
> [mm]f_t(x)=\bruch{8x-4t}{x}.[/mm] Ihr Graph sei [mm] K_t. [/mm]
>  a) Wie kann ich Graphen [mm] K_t [/mm] von verschiedenen Funktionen
> mit verschiedenen Werten von t in einem eigenen Intervall 1
> mit meinem GTR zeichnen?

Hallo,

ob es dafür einen Automatismus gibt., weiß ich nicht.

Das ist aber auch egal. An Deine Funktioenschar kommst Du, indem Du die graphen für verschiedene t, etwa t=1, t=5 und t=11, zeichnen läßt.

>  b) Wie führe ich eine Funktionsuntersuchung durch?

Genau wie jede andere Funktionsuntersuchung auch. Deine variable ist das x, und das t ist so zu behandeln, als stünde dort irgendeine Zahl.

>  c) Wie erhalte ich die Ortslinie der Hochpunkte von [mm] K_t? [/mm]

Das kann man natürlich am besten zeigen, wenn Du die extremwerte ausgerechnet hast.

Mal angenommen, Du hättest gefunden, daß der Extremwert immer bei (2t-3 / [mm] 4t^2) [/mm] liegt.

Dann geht das so

x=2t-1  ==> t=bruch{x+1}{2}

[mm] y=4t^2 [/mm]  (nun das t von oben einsetzen:)

[mm] =4(bruch{x+1}{2})^2. [/mm]

Der Graph von [mm] g(x)=4(bruch{x+1}{2})^2 [/mm] ist dann die gesuchte Ortslinie.

>  d) Es sei N der Schnittpunkt von [mm] K_2 [/mm] mit der x-Achse und
> P(u/v) mit u>1 ein Punkt auf [mm] K_2. [/mm] Die Punkte N, P und Q
> (u/0) sind die Eckpunkte eines Dreiecks. Für welchen Wert
> von u wird der Flächeninhalt dieses Dreiecks extremal?

Wie weit bist Du hier gekommen? Wo ist das Problem? (Das t hast Du in dieser Aufgabe ja nicht mehr. Du betrachtest jetzt [mm] f_2. [/mm] )Das ist eine Extremwertaufgabe mit Nebenbedingungen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]