www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGebrochenrationale Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - Gebrochenrationale Funktionen
Gebrochenrationale Funktionen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochenrationale Funktionen: Aufgabe 3-Tipps
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:15 Sa 03.03.2007
Autor: Marie003

Aufgabe
Gegeben ist die Funktionenschar [mm] f_a(x)=\bruch{4x-4a}{x²} [/mm] mit a E R^+_0.

a) Untersuchen Sie die Graphen [mm] G_a [/mm] von [mm] f_a [/mm] auf Schnittpunkte mit der x-Achse, Polstellen, Asymptoten, Hoch-, Tief- und Wendepunkte.
Zeichnen Sie den Graphen [mm] G_1 [/mm] von [mm] f_1 [/mm] im Bereich von [mm] -5\le [/mm] x [mm] \ge5. [/mm]

b) Die x-Achse, die Gerade x=a und die Paralleln zu den Koordinatenachsen durch den Extrempunkt von [mm] G_a [/mm] begrenzen ein Rechteck.
Berechnen Sie den Wert für a, bei dem der Umfang des Rechtecks extremal wird, um welche Art Extremum handelt es sich?

H [mm] (2a/\bruch{1}{a}), W(3a/\bruch{8}{9}a) [/mm] Es gilt [mm] U=2(a+\bruch{1}{a}) [/mm]

Hallo zusammen,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich war gestern bei einer Freundin, die in Mathe sehr schlecht ist. Ich selbst bin 10 Jahre aus der Schule und dachte, dass ich noch helfen könnte. Wir mussten feststellen, dass ich doch nicht mehr so fit bin. Und aus den vorhandenen Aufschrieben nix hervorgeht.

Nun ist am Montag die Mathearbeit zu o.g. Aufgaben und wir kommen nicht mal ansatzweise weiter (wohl ein paar Ableitungen)....

Könnte uns vielleicht jemand helfen? Denn ohne Lösungen sind wir voll aufgeschmissen....


        
Bezug
Gebrochenrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Sa 03.03.2007
Autor: angela.h.b.


> Gegeben ist die Funktionenschar [mm]f_a(x)=\bruch{4x-4a}{x²}[/mm]
> mit a E R^+_0.
>  
> a) Untersuchen Sie die Graphen [mm]G_a[/mm] von [mm]f_a[/mm] auf
> Schnittpunkte mit der x-Achse, Polstellen, Asymptoten,
> Hoch-, Tief- und Wendepunkte.
> Zeichnen Sie den Graphen [mm]G_1[/mm] von [mm]f_1[/mm] im Bereich von [mm]-5\le[/mm] x
> [mm]\ge5.[/mm]
>  
> b) Die x-Achse, die Gerade x=a und die Paralleln zu den
> Koordinatenachsen durch den Extrempunkt von [mm]G_a[/mm] begrenzen
> ein Rechteck.
>  Berechnen Sie den Wert für a, bei dem der Umfang des
> Rechtecks extremal wird, um welche Art Extremum handelt es
> sich?
>  
> H [mm](2a/\bruch{1}{a}), W(3a/\bruch{8}{9}a)[/mm] Es gilt
> [mm]U=2(a+\bruch{1}{a})[/mm]


Hallo,

Du präsentierst hier eine umfangreiche Aufgabe.

Es wäre sinnvoll, und es entspräche auch den Forenregeln, wenn Ihr das was Ihr bisher gerechnet habt, hier vorstellen würdet, und die Stellen, an denen Ihr nicht weiterkommt, konkret benennnen würdet.
Es macht das Helfen effektiver, denn man vermeidet, Romane über Dinge zu schreiben, die dem Gegenüber längst bekannt sind.

Hinweise:

Schnittpunkt mit der x-Achse: das sind die Nullstellemn der Funktion, also Gleichung =0 setzen.

Polstellen: Gibt es Stellen, an denen die Funktion nicht definiert ist, und an denen sie gegen [mm] \pm \infty [/mm] strebt?

Asymptoten: wie benimmt sich die Funktion für x--> [mm] \pm \infty? [/mm] Gibt es eine Gerade, der sie sich annähert? Da kriegt man gut heraus, indem man [mm] f_a(x) [/mm] schreibt als [mm] f_a(x)=\bruch{4x-4a}{x²}=\bruch{4x}{x²}-\bruch{4a}{x²} [/mm]

Für Extremwerte und Wendepunkte braucht man die Ableitungen.
Was ist mit der ersten Ableitung, wenn man einen Extremwert hat?
Wie kriegt man heraus ob Minimum oder Maximum?
Wie lautet die Bedingung für Wendepunkte?

Gruß v. Angela

Bezug
                
Bezug
Gebrochenrationale Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Sa 03.03.2007
Autor: Marie003

Hallo Angela,

Danke für Deine Antwort.

Wie bestimme ich die Asymptoten? Setze ich irgendwelche Zahlen ein und schaue mir die Richtung an?

Wie gehen wir an den b-Teil ran? Mir fällt es immer sehr schwer, mir was vorzustellen.....

Dankeschön...

Bezug
                        
Bezug
Gebrochenrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Sa 03.03.2007
Autor: M.Rex

Hallo

> Hallo Angela,
>  
> Danke für Deine Antwort.
>  
> Wie bestimme ich die Asymptoten? Setze ich irgendwelche
> Zahlen ein und schaue mir die Richtung an?

Nein, es gilt:

[mm] lim_{x\to\infty}{\bruch{4x-4a}{x²}} [/mm]
[mm] =lim_{x\to\infty}{\bruch{4x}{x²}-\bruch{4a}{x²}} [/mm]
[mm] =lim_{x\to\infty}{\bruch{4x}{x²}}-lim_{x\to\infty}{\bruch{4a}{x²}} [/mm]
[mm] =lim_{x\to\infty}{\bruch{4}{x}}-lim_{x\to\infty}{\bruch{4a}{x²}} [/mm]
=

Und genau das ist deine Asymprote.

>  
> Wie gehen wir an den b-Teil ran? Mir fällt es immer sehr
> schwer, mir was vorzustellen.....

Ich habe den Teil mal für a=2 gezeichnet.

[Dateianhang nicht öffentlich]

Marius

Und für a=4

[Dateianhang nicht öffentlich]



Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpeg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]