www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikGeburtstagsproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik" - Geburtstagsproblem
Geburtstagsproblem < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geburtstagsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 So 26.02.2006
Autor: Phoney

Hallo.

Es soll ausgerechnet werden, wie hoch die Wahrscheinlichkeit ist, dass von 5 Leuten zwei am selben Tag Geburtstag haben.

Wieso kann ich die Formel von  []Wikipedia nicht benutzen?

p= [mm] \bruch{365!}{(365-5)!*365^5} [/mm] = 0,027 = 2,7%

Die Lösung für das Problem ist jedoch 0,0027 = 0,27%.

$p =  [mm] \bruch{365}{365}* \bruch{1}{365}* \bruch{364}{365}* \bruch{363}{365}* \bruch{362}{365}$ [/mm]

Wieso darf ich also die Formel von Wikipedia nicht nehmen?

Danke,
Gruß Phoney


        
Bezug
Geburtstagsproblem: Hinweise
Status: (Antwort) fertig Status 
Datum: 15:28 So 26.02.2006
Autor: informix

Hallo Phoney,
>  
> Es soll ausgerechnet werden, wie hoch die
> Wahrscheinlichkeit ist, dass von 5 Leuten zwei am selben
> Tag Geburtstag haben.
>  
> Wieso kann ich die Formel von  
> []Wikipedia
> nicht benutzen?
>  
> p= [mm]\bruch{365!}{(365-5)!*365^5}[/mm] = 0,027 = 2,7%

du darfst die Formel benutzen, solltest aber genau überlegen, was du damit ausrechnest!

In Wikipedia steht:
Damit ergibt sich die Wahrscheinlichkeit von
    [mm] $\frac{u}{m} [/mm] = [mm] \frac{365!}{(365-n)!\cdot365^n}$ [/mm]
dass alle n Personen an unterschiedlichen Tagen Geburtstag haben.


Du berechnest also den Fall, dass alle 5 Personen an unterschiedlichen Tagen Geburtstag haben mit p=2,7%.
Das Gegenereignis beschreibt den Fall, dass nicht alle an verschiedenen Tagen Geburtstag haben, dass also mind. zwei am gleichen Tag Geburtstag haben:
$1 - [mm] \frac{365!}{(365-n)!\cdot365^n}$ [/mm]

>  
> Die Lösung für das Problem ist jedoch 0,0027 = 0,27%.

Diese Lösung scheint mir zu einem wiederum anderen Problem zu gehören:
genau zwei Personen sollen am selben Tag Geburtstag haben:
also zwei am selben Tag und die anderen an anderen Tag.

>  
> [mm]p = \bruch{365}{365}* \bruch{1}{365}* \bruch{364}{365}* \bruch{363}{365}* \bruch{362}{365}[/mm]
>  
> Wieso darf ich also die Formel von Wikipedia nicht nehmen?

Lies noch einmal genau, was dort steht.

Du musst noch einen Schritt weiter denken.

Gruß informix


Bezug
                
Bezug
Geburtstagsproblem: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Mo 27.02.2006
Autor: Phoney

Hi und Dankeschön. Aber die Aufgabe knicke ich erst einmal... Ist wohl vom schwierigerem Typ und zu zeitaufwändig... Wenn man noch nicht einmal das Grundprinzip verstanden hat, soll man sich ja nicht überanstrengen.
Aber irgendwann komme ich noch mal auf die Antwort zurück und werds bestimmt verstehen.

Grüße Phoney

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]