www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikGeburtstagsproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Geburtstagsproblem
Geburtstagsproblem < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geburtstagsproblem: Geburtstage im jahr
Status: (Frage) beantwortet Status 
Datum: 19:51 Sa 02.06.2012
Autor: bandchef

Aufgabe
Aus einer umfangreichen Bevölkerung werden n = 100 Personen zufällig ausgewählt (Auswahlsatz
f < 0,05).
Wie groß ist die Wahrscheinlichkeit, dass mindestens eine Person am 24.12. Geburtstag hat, wenn angenommen
werden kann, dass die Geburtstage in der Gesamtbevölkerung gleichmäßig über das Jahr verteilt
sind?

Hi Leute!

Stimmt das Ergebnis so: $P = 1- [mm] \left( \frac{1}{365} \right)^n [/mm] = 1- [mm] \left( \frac{1}{365} \right)^{100} \approx 100\%$ [/mm]

Stimmt das so?

        
Bezug
Geburtstagsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Sa 02.06.2012
Autor: Schadowmaster


> Aus einer umfangreichen Bevölkerung werden n = 100
> Personen zufällig ausgewählt (Auswahlsatz
>  f < 0,05).
>  Wie groß ist die Wahrscheinlichkeit, dass mindestens eine
> Person am 24.12. Geburtstag hat, wenn angenommen
>  werden kann, dass die Geburtstage in der
> Gesamtbevölkerung gleichmäßig über das Jahr verteilt
>  sind?
>  Hi Leute!
>  
> Stimmt das Ergebnis so: [mm]P = 1- \left( \frac{1}{365} \right)^n = 1- \left( \frac{1}{365} \right)^{100} \approx 100\%[/mm]
>  
> Stimmt das so?

moin,

Nein, das stimmt nicht ganz.
Erzähl doch mal genau, wie du auf die Werte kommst und begründe das alles schön sauber, dann wird dir wohl selbst auffallen, dass da was nicht ganz stimmt.

lg

Schadowmaster


Bezug
                
Bezug
Geburtstagsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Sa 02.06.2012
Autor: bandchef

Naja 1/365 deswegen weil ja nach einer Person aus den hundert Personen (deswegen "hoch" n) gefragt ist, die am 24.12. Geburstag haben soll.

Das "1-" kann aber auch nicht falsch sein, weil dann eine 0%ige Wahrscheinlichkeit rauskommt; das kann ja auch nicht stimmen.

Edit: Jetzt hab ich's: $P= 1- [mm] \left( 1-\frac{1}{365}\right)^{100} \approx 23,99\%$ [/mm]

Bezug
                        
Bezug
Geburtstagsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Sa 02.06.2012
Autor: luis52


> Edit: Jetzt hab ich's: [mm]P= 1- \left( 1-\frac{1}{365}\right)^{100} \approx 23,99\%[/mm]


[ok]


vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]