www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieGedächtnislosigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Gedächtnislosigkeit
Gedächtnislosigkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gedächtnislosigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Mo 07.07.2014
Autor: James90

Hi!

Ich will die Gedächnislosigkeit der Exponentialverteilung beweisen.
Sei also [mm] X\sim\exp(\lambda) [/mm] verteilt mit Parameter [mm] \lambda>0, [/mm] dann gilt für alle [mm] n,k\in\IN_0: [/mm]

$P(X>k)=P(X>n+k|X>n)$.

Wir wollen benutzen [mm] P(X\le k)=\lambda*e^{-\lambda*k}, [/mm] d.h. wir benutzen die Gegenwahrscheinlichkeit.

[mm] P(X>n+k|X>n)=\frac{P(X>n+k,X>n)}{P(X>n)}=\frac{P(X>n+k)}{P(X>n)}=\frac{1-P(X\le n+k))}{1-P(X\le n)}=\frac{1-\lambda*e^{-\lambda*(n+k)}}{1-\lambda*e^{-\lambda*k}} [/mm]

Ist das soweit richtig?

Auf der anderen Seite: [mm] $P(X>k)=1-P(X\le k)=1-\lambda*e^{-\lambda*k} [/mm] und ich habe keine Idee. Ich habe es mit Äquivalenzumformung probiert, aber ohne Erfolg.

Vielen Dank für jede Hilfe!

Viele Grüße, James.

        
Bezug
Gedächtnislosigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mo 07.07.2014
Autor: schachuzipus

Hallo,

> Hi!

>

> Ich will die Gedächnislosigkeit der Exponentialverteilung
> beweisen.
> Sei also [mm]X\sim\exp(\lambda)[/mm] verteilt mit Parameter
> [mm]\lambda>0,[/mm] dann gilt für alle [mm]n,k\in\IN_0:[/mm]

>

> [mm]P(X>k)=P(X>n+k|X>n)[/mm].

>

> Wir wollen benutzen [mm]P(X\le k)=\lambda*e^{-\lambda*k},[/mm] d.h.

Wieso? Du vermischt hier Dichte und Verteilungsfunktion ...

[mm]P(X\le k)=F_{\lambda}(k)=\begin{cases} 1-e^{-\lambda k}, & \textrm{für } k\ge 0 \\ 0, & \textrm{für } k<0 \end{cases}[/mm]

> wir benutzen die Gegenwahrscheinlichkeit.

>

> [mm]P(X>n+k|X>n)=\frac{P(X>n+k,X>n)}{P(X>n)}=\frac{P(X>n+k)}{P(X>n)}=\frac{1-P(X\le n+k))}{1-P(X\le n)}=\frac{1-\lambda*e^{-\lambda*(n+k)}}{1-\lambda*e^{-\lambda*k}}[/mm]

>

> Ist das soweit richtig?

Nein, der letzte Schritt stimmt nicht ...

Es ist [mm]P(X>n+k)=1-P(X\le n+k)=1-F_{\lambda}(n+k)[/mm] ...


>

> Auf der anderen Seite: [mm]P(X>k)=1-P(X\le k)=1-\lambda*e^{-\lambda*k}[/mm]
> und ich habe keine Idee. Ich habe es mit
> Äquivalenzumformung probiert, aber ohne Erfolg.

>

> Vielen Dank für jede Hilfe!

>

> Viele Grüße, James.

Gruß

schachuzipus

Bezug
                
Bezug
Gedächtnislosigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Mo 07.07.2014
Autor: James90

Hallo und vielen Dank für die schnelle Antwort!

> Wieso? Du vermischt hier Dichte und Verteilungsfunktion
> ...

Sorry......

> [mm]P(X\le k)=F_{\lambda}(k)=\begin{cases} 1-e^{-\lambda k}, & \textrm{für } k\ge 0 \\ 0, & \textrm{für } k<0 \end{cases}[/mm]
>  
> > wir benutzen die Gegenwahrscheinlichkeit.
>  >
>  >

> [mm]P(X>n+k|X>n)=\frac{P(X>n+k,X>n)}{P(X>n)}=\frac{P(X>n+k)}{P(X>n)}=\frac{1-P(X\le n+k))}{1-P(X\le n)}=\frac{1-\lambda*e^{-\lambda*(n+k)}}{1-\lambda*e^{-\lambda*k}}[/mm]
>  
> >
>  > Ist das soweit richtig?

>  
> Nein, der letzte Schritt stimmt nicht ...
>  
> Es ist [mm]P(X>n+k)=1-P(X\le n+k)=1-F_{\lambda}(n+k)[/mm] ...

Neuer Versuch:

[mm] P(X>n+k|X>n)=\frac{P(X>n+k,X>n)}{P(X>n)}=\frac{P(X>n+k)}{P(X>n)}=\frac{1-P(X\le n+k)}{1-P(X\le n)}=\frac{1-(1-e^{-\lambda*(n+k)})}{1-(1-e^{-\lambda*k})}=\frac{e^{-\lambda*(n+k)}}{e^{-\lambda*k}}=e^{-\lambda*n} [/mm]

So richtig? Irgendetwas muss doch nicht falsch sein, denn [mm] P(X>k)=1-P(X\le k)=1-e^{-\lambda*k}\not=e^{-\lambda*n}. [/mm]

Bezug
                        
Bezug
Gedächtnislosigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mo 07.07.2014
Autor: schachuzipus

Hallo nochmal,

> Hallo und vielen Dank für die schnelle Antwort!

>

> > Wieso? Du vermischt hier Dichte und Verteilungsfunktion
> > ...

>

> Sorry......

>

> > [mm]P(X\le k)=F_{\lambda}(k)=\begin{cases} 1-e^{-\lambda k}, & \textrm{für } k\ge 0 \\ 0, & \textrm{für } k<0 \end{cases}[/mm]

>

> >
> > > wir benutzen die Gegenwahrscheinlichkeit.
> > >
> > >
> >
> [mm]P(X>n+k|X>n)=\frac{P(X>n+k,X>n)}{P(X>n)}=\frac{P(X>n+k)}{P(X>n)}=\frac{1-P(X\le n+k))}{1-P(X\le n)}=\frac{1-\lambda*e^{-\lambda*(n+k)}}{1-\lambda*e^{-\lambda*k}}[/mm]

>

> >
> > >
> > > Ist das soweit richtig?
> >
> > Nein, der letzte Schritt stimmt nicht ...
> >
> > Es ist [mm]P(X>n+k)=1-P(X\le n+k)=1-F_{\lambda}(n+k)[/mm] ...

>

> Neuer Versuch:

>

> [mm]P(X>n+k|X>n)=\frac{P(X>n+k,X>n)}{P(X>n)}=\frac{P(X>n+k)}{P(X>n)}=\frac{1-P(X\le n+k)}{1-P(X\le n)}=\frac{1-(1-e^{-\lambda*(n+k)})}{1-(1-\red{e^{-\lambda*k}})}=\frac{e^{-\lambda*(n+k)}}{e^{-\lambda*k}}=e^{-\lambda*n}[/mm]

>

> So richtig?

Ich habs mal rot markiert. Bei dir ist im Nenner aus dem n ein k geworden ...

> Irgendetwas muss doch nicht falsch sein,

Hehe, "muss doch nicht" ist gut ;-)

> denn
> [mm]P(X>k)=1-P(X\le k)=1-e^{-\lambda*k}\not=e^{-\lambda*n}.[/mm]

Es bleibt am Ende [mm]e^{-\lambda k}[/mm], was gleich [mm]1-(1-e^{-\lambda k})=1-P(X\le k)=P(X>k)[/mm] ist - alles, wie es sein soll ...

Gruß

schachuzipus

Bezug
                                
Bezug
Gedächtnislosigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 Mo 07.07.2014
Autor: James90

Vielen lieben Dank! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]