www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikGedämpfte Schwingungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Gedämpfte Schwingungen
Gedämpfte Schwingungen < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gedämpfte Schwingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mo 14.01.2008
Autor: able1tung

Hallo ^^

Ich hätte da eine kleine Frage:

Man versucht eine Gleichung für gedämpfte Schwingungen herzuleiten. In diesem Zusammenhang wurde die charakteristische Differentialgleichung für gedämpfte harmonische Schwingungen hergeleitet. Durch geschicktes Substituieren kommt man bei der Lösung auf folgende Gleichung:

[z0 * e^lamba*t ] * [Quadratische Gleichung] = 0

So..wenn sich das ganze im reellen Zahlenbereich abspielen würde, dann gäbe es ja für  

[z0 * e^lamba*t ]=0

keine Lösung, da ja die e-Funktion keine Nullstellen hat.
Im komplexen (wie es hier der Fall ist...) hat die e-Funktion aber sehr wohl Nullstellen! Trotzdem rechnet man in der Herleitung - um Lambda zu berechnen - einfach mit

[Quadratische Gleichung] = 0

weiter

Das verstehe ich nicht...kann mir das jemand erklären???

Beste Grüße



        
Bezug
Gedämpfte Schwingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Mo 14.01.2008
Autor: leduart

Hallo
du suchst ja ne Funktion von t so dass der Ausdruck für alle t 0 ist. Bei [mm] e^{\lamba*t} [/mm] gibt es keine Möglichkeit die Funktion durch Wahl von [mm] \lambda [/mm] 0 zu machen! d.h. sie wäre nur für einzelne t  0. (und das ist sie ja später auch, die Schwingung geht ausser bei extremer Dämpfung immer wieder durch 0))
kurz die Funktion [mm] f(t)=z_0e^{\\lambda*t} [/mm] kann nicht die 0Fkt sein ausser für [mm] z_0=0 [/mm]
und f(t)=0 ist die uninteressante Lösung der DGL für die Anfangsbedingung f(0)=f'(0)=0
Gruss leduart

Bezug
                
Bezug
Gedämpfte Schwingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Mo 14.01.2008
Autor: able1tung

Aha..
Und warum führt nur die "komplexe Lösung" der DGL
zu der entsprechenden Schwingung?
Wieso kann der Realteil bei der Transformation von Gauss-Ebene --> Normale Ebene einfach weggelassen werden?

Beste Grüße ^^

Bezug
                        
Bezug
Gedämpfte Schwingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Mo 14.01.2008
Autor: leduart

Hallo
[mm] e^{irx} [/mm] hat dieselbe DGL wie sin(rx)  oder cos(rx) nämlich [mm] f''=-r^2*f. [/mm]
aber mit den e-fkt lässt sich leichter rechnen.
Du kannst einfach ausprobieren dass der Realteil oder der imag. Teil die Dgl auch löst.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]