www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikGeltung einer Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Aussagenlogik" - Geltung einer Gleichung
Geltung einer Gleichung < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geltung einer Gleichung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:25 Fr 13.05.2011
Autor: mobey

Aufgabe
Seien u, v, w Vektoren in R3. Zeigen Sie, dass die Gleichung u · (v × w) = (u × v) · w gilt.

Ich rechne es aus, da kommt bei mir am Ende nicht das Gleiche raus. Zwar kommen die gleichen Buchstaben (Zahlen raus), aber dann halt nicht an der Stelle, wo sie sein sollten. Wäre sehr dankbar für jede Hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geltung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Fr 13.05.2011
Autor: Al-Chwarizmi


> Seien u, v, w Vektoren in R3. Zeigen Sie, dass die
> Gleichung u · (v × w) = (u × v) · w gilt.
>  Ich rechne es aus, da kommt bei mir am Ende nicht das
> Gleiche raus. Zwar kommen die gleichen Buchstaben (Zahlen
> raus), aber dann halt nicht an der Stelle, wo sie sein
> sollten.

Was meinst du mit " nicht an der Stelle, wo sie sein sollten" ?

Nutze die Rechengesetze (Kommutativ- , Assoziativ-
und Distributivgesetz), um die Terme zu ordnen.

LG   Al-Chw.


Bezug
                
Bezug
Geltung einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Fr 13.05.2011
Autor: mobey

Ja, dass ich z.b. P (1,2,3) und auf der anderen Seite ist der P (2,3,1) Damit ist es ja nicht bewiesen, dass die eine Formel gleich der anderen ist.

Bezug
                        
Bezug
Geltung einer Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Fr 13.05.2011
Autor: MorgiJL

sorry, antwort falsch eingefügt...siehe die andere antwort von mir, danke.


Bezug
        
Bezug
Geltung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Fr 13.05.2011
Autor: MorgiJL

Hey...

also....

> Seien u, v, w Vektoren in R3. Zeigen Sie, dass die
> Gleichung u · (v × w) = (u × v) · w gilt.

Warum Zahlen einsetzen?...das u, v und w sind doch vektoren, also [mm] $\vec{u} [/mm] =  [mm] \vektor{u_1 \\ u_2 \\ u_3 }$, [/mm] analog für [mm] $\vec{v}$ [/mm] und [mm] $\vec{w}$. [/mm]

Jetzt nimmst du einfach die Definitionen fürs Skalarprodukt und Kreuzprodukt und rechnest es aus, dann sollte das gleiche rauskommen.

Grüße!
Jan


Bezug
        
Bezug
Geltung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Fr 13.05.2011
Autor: ullim

Hi,

[mm] u\cdot(v\times{w})=u_x*(v_yw_z-v_zw_y)+u_y*(v_zw_x-v_xw_z)+u_z*(v_xw_y-v_yw_x) [/mm] und

[mm] (u\times{v})\cdot{w}=w_x*(u_yv_z-u_zv_y)+w_y*(u_zv_x-u_xv_z)+w_z*(u_xv_y-u_yv_x) [/mm]

und jetzt beide Ausdrücke vergleichen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]