www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikGemeinsame Verteilung von ZV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Gemeinsame Verteilung von ZV
Gemeinsame Verteilung von ZV < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gemeinsame Verteilung von ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:14 Sa 08.05.2004
Autor: Frager

Es geht um folgende Aufgabe:

X und Y seien unabhängige ZVen, die beide Bernoulliverteilt (Parameter 0,5) sind.
Die ZVen U,V seien definiert durch U=X+Y        V=|X-Y|

a)Bestimme die Verteilungen von U und V
b)Sind U und V ebenfalls unabhängig voneinander?

U müsste laut Faltung ja nun Bin(2;0,5) verteilt sein. Richtig?
Aber V?

Und so erübrigt sich b) von selber ;) Wäre für jeden Tip dankbar.
-der Frager

        
Bezug
Gemeinsame Verteilung von ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Sa 08.05.2004
Autor: Julius

Hallo,

ich will dir mal nicht die ganze Aufgabe bereits vorrechnen, sondern wir wollen sie gemeinsam erarbeiten.

> X und Y seien unabhängige ZVen, die beide Bernoulliverteilt
> (Parameter 0,5) sind.
> Die ZVen U,V seien definiert durch U=X+Y        V=|X-Y|

> a)Bestimme die Verteilungen von U und V
> b)Sind U und V ebenfalls unabhängig voneinander?
>
> U müsste laut Faltung ja nun Bin(2;0,5) verteilt sein.
> Richtig?

[ok]

>  Aber V?

Offenbar kann [mm]V[/mm] nur zwei Werte annehmen, [mm]0[/mm] und [mm]1[/mm], d.h. [mm]V[/mm] ist Bernoulli-verteilt.

Es gilt:

[mm]P(V=0) = P(X=Y) = P(X=0,Y=0) + P(X=1,Y=1)= \ldots[/mm]

Versuche das mal weiter zu rechnen, indem du die Unabhängigkeit zwischen [mm]X[/mm] und [mm]Y[/mm] ausnutzt.

Weiterhin gilt:

[mm]P(V=1) = P(X=0,Y=1) + P(X=1,Y=0) = \ldots[/mm].

Gehe hier also analog vor.

Nun ja, natürlich sind [mm]U[/mm] und [mm]V[/mm] nicht unabhängig, das ist intuitiv völlig klar (sie sind ja funktional verbunden).

Man kann es aber auch mathematisch nachweisen:

[mm]P(U=0,V=0) = P(X=0,Y=0) = \ldots \ne P(U=0) \cdot P(V=0)[/mm].

Versuche es doch mal und melde dich mit einem Lösungsvorschlag oder weiteren Fragen. Allerdings bin ich das ganze Wochenende weg. Es hilft dir dann aber sicherlich jemand anders weiter.

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]