www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGeometr. Bedeutung lin. Abb.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Geometr. Bedeutung lin. Abb.
Geometr. Bedeutung lin. Abb. < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometr. Bedeutung lin. Abb.: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:03 Mo 04.04.2011
Autor: bree_

Ich habe hier eine Aufgabe wo ich die Erklärung nicht verstehe.

Sei A [mm] \begin{pmatrix} 2 & 0 \\ 0 & 3 \\ \end{pmatrix} [/mm]

und B [mm] \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{pmatrix} [/mm]

a) Was ist die Bedeutung der zugehörigen lin. Abbildung?

Zu A steht in der Lösung es handle sich um eine Streckung im Faktor 2 in x1 Richtung und um Faktor 3 in x2- Richtung. Wie kann man sich das erklären?

Zu B heißt es, es handle sich um eine Drehung um pie/2 um den Nullpunkt, das versteh ich auch nicht, wie man da drauf kommt.

Finde leider keine Erklärung dazu im Skript oder Büchern.

Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geometr. Bedeutung lin. Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mo 04.04.2011
Autor: Al-Chwarizmi


> Ich habe hier eine Aufgabe wo ich die Erklärung nicht
> verstehe.
>  
> Sei A [mm]\begin{pmatrix} 2 & 0 \\ 0 & 3 \\ \end{pmatrix}[/mm]
>  
> und B [mm]\begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{pmatrix}[/mm]
>  
> a) Was ist die Bedeutung der zugehörigen lin. Abbildung?
>  
> Zu A steht in der Lösung es handle sich um eine Streckung
> im Faktor 2 in x1 Richtung und um Faktor 3 in x2- Richtung.
> Wie kann man sich das erklären?

Ist das nicht offensichtlich ?
Der Punkt [mm] (x_1 [/mm] , [mm] x_2) [/mm] wird auf [mm] (2*x_1 [/mm] , [mm] 3*x_2) [/mm] abgebildet.
Dies könnte man in zwei Schritte aufteilen:
1.) axiale Streckung in [mm] x_1 [/mm] - Richtung (Parallelstreckung) mit Faktor 2
2.) axiale Streckung in [mm] x_2 [/mm] - Richtung (Parallelstreckung) mit Faktor 3
  

> Zu B heißt es, es handle sich um eine Drehung um [mm] \pi/2 [/mm] um
> den Nullpunkt, das versteh ich auch nicht, wie man da drauf
> kommt.

Unterwirf mal die Grundvektoren [mm] \pmat{1\\0} [/mm] und [mm] \pmat{0\\1} [/mm] dieser
Abbildung und zeichne dir das Ganze auf !
(das kannst du auch für die erste Abbildung)
  

> Finde leider keine Erklärung dazu im Skript oder
> Büchern.
>  
> Danke.

LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]