Geometrie:Def. Projektivitäten < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:06 Di 17.02.2009 | Autor: | didi1985 |
Aufgabe | Definition: V und V' seien zwei Vektorräume gleicher Dimension größer oder gleich 2. Eine Projektivität [mm] \pi [/mm] von IP(V) auf IP(V') ist eine Abbildung, die durch eine linerare Abbildung von V auf V' induziert wird. Das bedeutet: Es gibt eine umkehrbare lineare Abbildung [mm] \gamma [/mm] von V auf V' sodass
[mm] \pi [/mm] <v> = [mm] <\gamma [/mm] v> für alle v aus V |
Ich verstehe diese Definition leider nicht bzw. mir ist nicht klar, was sie aussagt. Insbesondere habe ich keinen Ahnung, was in diesem Zusammenhang induziert heißen soll.
Und wie kann man mit der letzten Zeile umgehen, wie kann man damit "rechnen"?
Gruß
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:31 Di 17.02.2009 | Autor: | statler |
> Definition: V und V' seien zwei Vektorräume gleicher
> Dimension größer oder gleich 2. Eine Projektivität [mm]\pi[/mm] von
> [mm] $\IP(V)$ [/mm] auf [mm] $\IP(V')$ [/mm] ist eine Abbildung, die durch eine
> linerare Abbildung von V auf V' induziert wird. Das
> bedeutet: Es gibt eine umkehrbare lineare Abbildung [mm]\gamma[/mm]
> von V auf V' sodass
>
> [mm]\pi[/mm] <v> = [mm]<\gamma[/mm] v> für alle v aus V
> Ich verstehe diese Definition leider nicht bzw. mir ist
> nicht klar, was sie aussagt. Insbesondere habe ich keinen
> Ahnung, was in diesem Zusammenhang induziert heißen soll.
> Und wie kann man mit der letzten Zeile umgehen, wie kann
> man damit "rechnen"?
Die Elemente von [mm] $\IP(V)$ [/mm] bzw. [mm] $\IP(V')$ [/mm] sind doch Äquivalenzklassen, die durch <v> bezeichnet werden. Eine Abb. muß also eine Äquivalenzklasse von [mm] $\IP(V)$ [/mm] auf eine von [mm] $\IP(V')$ [/mm] abbilden. Und die Definition sagt, wie das passieren soll. Man nehme in der Klasse <v> einen Vertreter, z. B. v, wende auf ihn die lin. Abb. [mm] $\gamma$ [/mm] an, das gibt als Bild [mm] $\gamma$(v) [/mm] und nehme dann dessen Klasse in [mm] $\IP(V')$. [/mm] So weit, so gut. Man muß dann allerdings nachweisen, daß dies Def. von der Wahl des Vertreters unabhängig ist. Was passiert also, wenn ich statt v ein w mit <v> = <w> nehme? Die Antwort überlasse ich dir.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:07 Mi 18.02.2009 | Autor: | didi1985 |
hi! ich glaub so langsam steig ich durch... Danke! Und wenn ich ein w nehme, ist das ja grad ein Vielfaches, also kein Problem. Gruß
|
|
|
|