www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeGerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Gerade
Gerade < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Mi 18.06.2008
Autor: svenpile

Aufgabe
Seien P, Q zwei Punkte im [mm] \IR^{2}. [/mm] Sei G:= [mm] \{R \in \IR^{2} | \ \parallel P-R\parallel = \parallel Q-P\parallel\}. [/mm] Sei O:= p+ 0,5 (Q-P). Zeiegn sie :
R [mm] \in [/mm] G [mm] \gdw [/mm] <R-O, P-Q>=0
Schließen sie, dass G eien Gerade ist, d.h ein affiner Unterraum der Dimension 2 in [mm] \IR^{2} [/mm] ist

Ich habe folgendermaßen angefan gen:

Zuerst habe ich O allgemein als Vektor bestimmt:

[mm] O:=\vektor{p_1 \\ p_2}+0,5\vektor{q_1-p_1 \\ q_2-p_2}=\vektor{0,5p_1+0,5q_1 \\ 0,5p_2+0,5q_2} [/mm]

So nun habe ich das Skalarprodukt<R-O, P-Q> berechnet und kam nach ziemlich langen Umformungen zum Ergebnis:
[mm] p_1^{2}-2p_1r_1+p_2^{2}-2r_2p_2-q_1^{2}+2q_1r_1-q_2^{2}+2r_2q_2 [/mm]
=0
Da die Normvoraussetzung umgeformt dasselbe ergibt.
[mm] \parallel P-R\parallel [/mm] - [mm] \parallel Q-P\parallel\=0 [/mm]
[mm] \Rightarrow \wurzel{(p_1-r_1)^{2}+ (p_2-r_2)^{2}}-\wurzel{(q_1-r_1)^{2}+(q_2-r_2)^{2}}=0 [/mm]
[mm] \Rightarrow(p_1-r_1)^{2}+ (p_2-r_2)^{2}-(q_1-r_1)^{2}-(q_2-r_2)^{2}=0 [/mm]
und das ergibt dasselbe wie oben.
Ist das soweit korrekt wenn ja mussich eine Rückrichtung zeigen ?
Und wie schließe ich das das eien Gerade ist?

Vielen Dank und liebe Grüße

Sven


        
Bezug
Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Do 19.06.2008
Autor: Gnometech

Grüße!

>  Ich habe folgendermaßen angefan gen:
>  
> Zuerst habe ich O allgemein als Vektor bestimmt:
>  
> [mm]O:=\vektor{p_1 \\ p_2}+0,5\vektor{q_1-p_1 \\ q_2-p_2}=\vektor{0,5p_1+0,5q_1 \\ 0,5p_2+0,5q_2}[/mm]
>  
> So nun habe ich das Skalarprodukt<R-O, P-Q> berechnet und
> kam nach ziemlich langen Umformungen zum Ergebnis:
>  
> [mm]p_1^{2}-2p_1r_1+p_2^{2}-2r_2p_2-q_1^{2}+2q_1r_1-q_2^{2}+2r_2q_2[/mm]
>  =0
>  Da die Normvoraussetzung umgeformt dasselbe ergibt.
>  [mm]\parallel P-R\parallel[/mm] - [mm]\parallel Q-P\parallel\=0[/mm]
>  
> [mm]\Rightarrow \wurzel{(p_1-r_1)^{2}+ (p_2-r_2)^{2}}-\wurzel{(q_1-r_1)^{2}+(q_2-r_2)^{2}}=0[/mm]
>  
>  [mm]\Rightarrow(p_1-r_1)^{2}+ (p_2-r_2)^{2}-(q_1-r_1)^{2}-(q_2-r_2)^{2}=0[/mm]
>  
> und das ergibt dasselbe wie oben.
>  Ist das soweit korrekt wenn ja mussich eine Rückrichtung
> zeigen ?

Naja, Du hast gezeigt, dass beide Bedingungen gleich sind, also sind sie äquivalent... keine Rückrichtung mehr zu zeigen, wenn $R [mm] \in [/mm] G$ gilt, dann folgt daraus die zweite Bedingung und die bedeutet [mm] $\langle [/mm] R - O, P - Q [mm] \rangle [/mm] = 0$ und andersherum.

>  Und wie schließe ich das das eien Gerade ist?

Das ist doch jetzt nicht mehr schwer. :-) Eine affine Gerade ist nichts als eine verschobene Ursprungsgerade (= 1-dim. Unterraum), es reicht also einen solchen Unterraum anzugeben und zu zeigen, dass $G$ eine Verschiebung ist.

Betrachte $G' := [mm] \{ S \in \IR^2 : \langle S, P- Q \rangle = 0 \}$. [/mm] Da $P$ und $Q$ verschieden sind, ist der zweite Vektor ungleich 0 und das Ergebnis ist ein 1-dimensionaler Unterraum im [mm] $\IR^2$, [/mm] das orthogonale Komplement zum Erzeugnis von $P-Q$.

Und nach der obigen Rechnung gilt doch $R [mm] \in [/mm] G [mm] \iff [/mm] R - O [mm] \in [/mm] G'$, also ist $G$ die um $O$ verschobene Gerade $G'$, also ein affiner Unterraum.

Alles klar? :-)

Gruß,
Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]