www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGerade aufstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Gerade aufstellen
Gerade aufstellen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade aufstellen: Verständnis Ansatz
Status: (Frage) beantwortet Status 
Datum: 22:56 Sa 29.10.2005
Autor: ttgirltt

Hi also ich versteh erst gar nicht die Aufgabe.
Bestimmen sie alle Geraden L€R², die den Kreis {(x,y)€R²/x²+y²=1} in genau einem Punkt schneiden.

Wie kann eine gerade im R² einen Kreis in genau einen Punkt schneiden??
Hat jemand ne Lösung???

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:http://www.uni-protokolle.de/foren/viewt/40056,0.html?sid=42762febe946d9aef1575125c8738f57


        
Bezug
Gerade aufstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:10 Sa 29.10.2005
Autor: ribu

soweit ich weis, können geraden kreise in einem punkt berühren ( tangente) sollte es einen schnittpkt von kreis und gerade geben, muss es auch einen zweiten geben, denn dann haste eine sekante
oder eine gerade schneidet nicht den kreis und berührt ihn auch nich, dann haste ne passante

siehe auch anhang

mfg ribu

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Gerade aufstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 Sa 29.10.2005
Autor: ttgirltt

deshalb ja, aber es ist eine Aufgabe von meinen Übungszettel fürs studium und denk mal hat irgendeine lösung

Bezug
        
Bezug
Gerade aufstellen: gleiche Aufgabe?
Status: (Antwort) fertig Status 
Datum: 00:38 So 30.10.2005
Autor: informix

Hallo ttgirltt,
[willkommenmr]

> Hi also ich versteh erst gar nicht die Aufgabe.
> Bestimmen sie alle Geraden L€R², die den Kreis
> {(x,y)€R²/x²+y²=1} in genau einem Punkt schneiden.

[guckstduhier] (fast) gleiche Aufgabe

>
> Wie kann eine gerade im R² einen Kreis in genau einen Punkt
> schneiden??
> Hat jemand ne Lösung???

irgendwie ist die Aufgabe wohl so nicht lösbar: es gibtr unendlich viele solcher Geraden!
hast du vielleicht noch einen Punkt auf dem Kreis, durch den die Tangente gehen soll?

>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten
> gestellt:http://www.uni-protokolle.de/foren/viewt/40056,0.html?sid=42762febe946d9aef1575125c8738f57
>  

danke für den Hinweis. Sag bitte Bescheid, wenn du dort eine Antwort bekommen hast.

Gruß informix


Bezug
        
Bezug
Gerade aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:22 So 30.10.2005
Autor: Marc

Hallo ttgirltt,

[willkommenmr]

> Hi also ich versteh erst gar nicht die Aufgabe.
> Bestimmen sie alle Geraden L€R², die den Kreis
> {(x,y)€R²/x²+y²=1} in genau einem Punkt schneiden.
>
> Wie kann eine gerade im R² einen Kreis in genau einen Punkt
> schneiden??
> Hat jemand ne Lösung???

Mit welchen Mitteln sollst du diese Aufgabe denn lösen?

Du nimmst dir einfach eine allgemeine Gerade her, z.B.

$L:\ y=m*x+b$
bzw.
$L:\ [mm] \vektor{x\\y}=\vektor{0\\b}+t*\vektor{1\\m}$ [/mm]

her und schneidest sie mit dem Kreis (senkrechte Geraden musst du dir bei diesem Ansatz separat überlegen; dies könntest du dir sparen, wenn du etwas allgemeiner mit einer Geraden $L:\ [mm] \vektor{x\\y}=\vektor{0\\b}+t*\vektor{m_1\\m_2}$ [/mm] ansetzt).

Zu lösen ist also das Gleichungssystem
[mm] $x^2+y^2=1$ [/mm]
[mm] $\wedge$ [/mm] $y=m*x+b$

Nach dem Einsetzen der zweiten Gleichung in die erste ergibt sich:

[mm] $x^2+(m*x+b)^2=1$ [/mm]

Versuche diese quadratische Gleichung (in x) mal nach x zu lösen, ich habe dazu die MBp/q-Formel gewählt.

Die Anzahl der Lösungen dieser Gleichung ist bekannt, leite daraus eine Bedingung für die Diskriminante (also den Term unter der Wurzel) ab.

Du erhältst eine sehr einfache Gleichung für b und m.

Alle Geraden, deren Steigung und Achsenabschnitt diese Bedingung erfüllen, schneiden den Kreis in genau einem Punkt.

Probier's mal und schreib' uns, wie weit du kommst.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]