www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGeraden, Schnittpunkte im R^3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Geraden, Schnittpunkte im R^3
Geraden, Schnittpunkte im R^3 < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden, Schnittpunkte im R^3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Mi 06.03.2013
Autor: Labrinth

Aufgabe
Im [mm] $\mathbb{R}^3$ [/mm] seien vier Punkte gegeben:
[mm] $A:=(x_1,y_1,z_1)$ [/mm]
[mm] $B:=(x_1,y_1,z_2)$ [/mm]
[mm] $C:=(x_3,y_3,z_2)$ [/mm]
[mm] $D:=(x_3,y_3,z_3)$ [/mm]


Guten Tag!

Ich habe leider kaum Vorwissen in LA.

Ich benötige den Schnittpunkt [mm] $AD\cap{}BC$ [/mm] (falls man das so notiert). Wie ich eventuell Geradengleichungen aufstelle, weiß ich im Dreidimensionalen nicht.

Für jede Hilfe bin ich dankbar und auch bereit mitzudenken.

Beste Grüße,
Labrinth

        
Bezug
Geraden, Schnittpunkte im R^3: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Mi 06.03.2013
Autor: steppenhahn

Hallo,

> Im [mm]\mathbb{R}^3[/mm] seien vier Punkte gegeben:
>  [mm]A:=(x_1,y_1,z_1)[/mm]
>  [mm]B:=(x_1,y_1,z_2)[/mm]
>  [mm]C:=(x_3,y_3,z_2)[/mm]
>  [mm]D:=(x_3,y_3,z_3)[/mm]


> Ich benötige den Schnittpunkt [mm]AD\cap{}BC[/mm] (falls man das so
> notiert). Wie ich eventuell Geradengleichungen aufstelle,
> weiß ich im Dreidimensionalen nicht.


Dann stelle doch erstmal beide Geradengleichungen auf.

Bsp: Gerade AD

Du brauchst einen Stützvektor und einen Richtungsvektor. Den Stützvektor [mm] $v_1$ [/mm] erhältst du einfach als einen der beiden vorgegebenen Punkte (z.B. A), der Richtungsvektor [mm] $w_1$ [/mm] ist die Differenz der beiden Punkte (D-A).

Die Geradengleichung lautet dann z.B.

[mm] $g(\lambda) [/mm] = [mm] v_1 [/mm] + [mm] \lambda*w_1$ [/mm]   mit   [mm] $\lambda \in \IR$. [/mm]

Wenn du das auch noch mit der anderen Geraden machst, erhältst du eine zweite Geradengleichung

[mm] $h(\mu) [/mm] = [mm] v_2 [/mm] + [mm] \mu*w_2$ [/mm]    mit    [mm] $\mu \in \IR$. [/mm]

Dann kannst du diese beiden Geraden gleichsetzen und musst das Gleichungssystem für [mm] $\mu, \lambda$ [/mm] lösen:

[mm] $g(\lambda) [/mm] = [mm] h(\mu)$. [/mm]

Wenn du die Lösungen für [mm] $\lambda$ [/mm] bzw. [mm] $\mu$ [/mm] in die Geradengleichungen einsetzt, erhältst du die Schnittpunkte.

Ich rate dir, das mal an einem konkreten Beispiel durchzurechnen, und dann anhand dieses konkreten Beispiels Fragen zu stellen :-)


> Für jede Hilfe bin ich dankbar und auch bereit
> mitzudenken.

Bestens :-)

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]