www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale SprachenGesamtkosten des Zählens
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Formale Sprachen" - Gesamtkosten des Zählens
Gesamtkosten des Zählens < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gesamtkosten des Zählens: Bankkontenmethode
Status: (Frage) beantwortet Status 
Datum: 18:41 Mo 13.02.2006
Autor: nevinpol

Aufgabe
Beweisen Sie den unten angegeben Satz mit Hilfe der Bankkontenmethode:

Die Gesamtkosten des Zählens von $0$ nach $n$ sind durch $2n$ beschränkt.

Hallo,

die Lösung vom Tut lautet:

$ n [mm] \cdot \summe_{i=0}^{n} \bruch{1}{2^i}$ [/mm] konvergiert zu $2n$

Frage 1. Warum konvergiert es denn überhaupt gegen $2n$?

Frage 2. Warum zähle ich denn z.B. für $n=4$:

$4 [mm] \cdot (\bruch{1}{2^0}+\bruch{1}{2^1}+\bruch{1}{2^2}+\bruch{1}{2^3}+\bruch{1}{2^4})$ [/mm]



Vielen Dank für Eure Postings

Nevinpol




        
Bezug
Gesamtkosten des Zählens: Antwort
Status: (Antwort) fertig Status 
Datum: 06:45 Di 14.02.2006
Autor: mathiash

Hallo und guten Morgen,

zur Frage 1: Die Reihe [mm] \sum_{i=0}^{\infty}2^{-i} [/mm]   konvergiert gegen 2, dass sollte aus der Analysis
bekannt sein. Es gilt naemlich

[mm] \sum_{i=0}^n2^{-i}=i\frac{2^{-(n+1)}-1}{2^{-1}-1}=2\cdot (1-2^{-(n+1)})\:\rightarrow 2\:\: (n\to\infty) [/mm]

Zu Frage 2: ich kenne leider den Begriff Bankkontenmethode nicht, aber gemeint sein sollte ein Schluss der folgenden
Art: Um von 0 auf n zu zaehlen, muss man n mal den Zaehler erhoehen. Dabei muss man jedes Mal die letzte Stelle
durchlaufen, [mm] n\cdot 2^{-1} [/mm] mal die vorletzte, [mm] n\cdot 2^{-2} [/mm] mal die vorvorletzte usw. (bei Binaerdarstellung und
im TM-Modell, nicht wahr ?).  

Allerdings braucht man bei einem Zaehler bis zur Zahl n in Binaerdarstellung nur [mm] \log [/mm] (n) Bits, so dass
ich da die Summe [mm] n\cdot \sum_{i=0}^{\log (n)}2^{-i}=n\cdot \frac{2^{\log (n)+1}-1}{2^{-1}-1}=2n\cdot (1-2^{-\log (n)-1}) [/mm]
betrachten wuerde - kommt asymptotisch auf dasselbe heraus.

Viele Gruesse,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]