www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGeschlossener Ausdruck
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Geschlossener Ausdruck
Geschlossener Ausdruck < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschlossener Ausdruck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Do 28.08.2008
Autor: bigalow

Aufgabe
Gegeben sind die Funktionen [mm] f:(-\rho,\rho) \to \IR: x\mapsto \summe_{k=1}^{\infty}\frac{2^kx^k}{k} [/mm] .
[mm] g:(-\rho,\rho) \to \IR: x\mapsto \summe_{k=0}^{\infty}\frac{(-1)^k(2x)^{2k+1}}{2k+1} [/mm]

Geben Sie einen geschlossenen Ausdruck für die Ableitung f' bzw. g' an.

Funktion f:

Zunächst ist [mm] \summe_{k=1}^{\infty}\frac{2^kx^k}{k}=\summe_{k=1}^{\infty}\frac{2x^k}{k} [/mm]
Abgeleitet: [mm] \summe_{k=1}^{\infty}\frac{2k*2x^{k-1}}{k}=\summe_{m=0}^{\infty}2*2x^m [/mm]

Dafür finde ich aber keinen geschlossenen Ausdruck, genauso für g'. Habe ich falsch abgeleitet?

Besten Dank für eure Antworten!

        
Bezug
Geschlossener Ausdruck: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Do 28.08.2008
Autor: abakus


> Gegeben sind die Funktionen [mm]f:(-\rho,\rho) \to \IR: x\mapsto \summe_{k=1}^{\infty}\frac{2^kx^k}{k}[/mm]
> .
>  [mm]g:(-\rho,\rho) \to \IR: x\mapsto \summe_{k=0}^{\infty}\frac{(-1)^k(2x)^{2k+1}}{2k+1}[/mm]
>  
> Geben Sie einen geschlossenen Ausdruck für die Ableitung f'
> bzw. g' an.
>  Funktion f:
>  
> Zunächst ist
> [mm]\summe_{k=1}^{\infty}\frac{2^kx^k}{k}=\summe_{k=1}^{\infty}\frac{2x^k}{k}[/mm]

Diese Schreibweise ist irreführend, du müsstest 2x in Klammern schreiben.
Lass es ruhig, wie es war [mm] 2^k [/mm] ist ein konstanter Faktor, [mm] x^k [/mm] ergibt abgeleitet [mm] k*x^{k-1}. [/mm]
Die Ableitung ist dann
[mm]\summe_{k=1}^{\infty}\frac{2^k*k*x^{k-1}}{k}=\summe_{m=1}^{\infty}2*(2x)^{k-1}[/mm]

>  Abgeleitet:
> [mm]\summe_{k=1}^{\infty}\frac{2k*2x^{k-1}}{k}=\summe_{m=0}^{\infty}2*2x^m[/mm]

Abgesehen von der fehlenden Klammer um 2x  stimmt dein Endergebnis mit der Indexverschiebung.

>  
> Dafür finde ich aber keinen geschlossenen Ausdruck, genauso
> für g'. Habe ich falsch abgeleitet?
>  

Die Summe kannst du mit der Summenformel für geometrische Reihen ausdrücken (mit q=2k).

Zu g': beim Ableiten entsteht unter anderem der Teilausdruck [mm] (2x)^{2k}. [/mm] Den kannst du auch als [mm] (4x^2)^k [/mm] schreiben.

Gruß Abakus

> Besten Dank für eure Antworten!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]