www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikGeschwindigkeitsvektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Geschwindigkeitsvektor
Geschwindigkeitsvektor < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschwindigkeitsvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Di 31.10.2006
Autor: katha

Aufgabe
Die Bewegung eines Punktes werdein einem kartesischen Koordinatensystem beschrieben durch
a)  [mm] \vec{r_{a}}(t) [/mm] = (R cos x, R sin x, 0 ),
b)  [mm] \vec{r_{b}}(t) [/mm] = (R cos x, R sin x, ct ),
c)  [mm] \vec{r_{c}}(t) [/mm] = (R cos x, R sin x, [mm] ct^{2} [/mm] ).

mit t-Zeit, R0const,x=wt, Winkelgeschwindigkeit [mm] w=constant_1, [/mm] und [mm] c=const_2. [/mm]
Wie sieht die Bewegungskurve des Punktes jeweils aus?
Man berechne für die Geschwindigkeit [mm] \vec{v} [/mm] und v, und für die Beschleunigung [mm] \vec{a} [/mm] und a in kartesischen Koordinaten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Im Prinzip habe ich die Aufgabenstellung verstanden, aber die Rechnung will mir nicht gelingen.
Wer kann mir helfen?



        
Bezug
Geschwindigkeitsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Di 31.10.2006
Autor: leduart

Hallo
Wenn du die Aufgabe verstanden hast, setz für x =w*t ein und berechne [mm] \vec [/mm] v= [mm] \vec [/mm] r'
Für die Bewegung in x y Richtung bilde ,die ersten 2 komponente quadriere sie und addiere sie, dann siehst du die Bewegung! Als mathe Stud. solltest du wissen, dass sin und cos "Kreisfnktionen sind! Die Bewegung in z Richtung ist ja in allen 3 Fällen einfach.,
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]