www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenÖkonomische FunktionenGewinnfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ökonomische Funktionen" - Gewinnfunktion
Gewinnfunktion < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gewinnfunktion: zur Kostenfunktion
Status: (Frage) beantwortet Status 
Datum: 15:59 Di 14.08.2007
Autor: Lars_B.

Aufgabe
Gegeben ist der konstante Preis p= 40 sowie die Kostenfunktion

[mm] K(x) = 32 + 12x - 5x^2 + x^3 , 0 \le x \le 12 [/mm]

wobei x den Absatz bezeichnet.

a. Es ist die Gewinnfunktion zu ermitteln.
b. Gewinnschwelle und Gewinngrenze sind zu ermitteln.
c. Das Gewinnmaximum [mm] G_M [/mm] ist zu errechnen.
d. Begründen Sie, dass die Grenzkosten für die Gewinnmaximierende Absatzmenge gleich dem Preis ist.
e. Erlös-, Kosten- und Gewinnfunktion sind in einer Graphik zu skizzieren.

Hinweis: Die Gewinnfunktion hat an der Stelle x = -4 eine Nullstelle.

Hallo,

komme mit diesem Aufgabentypus noch nicht zurecht.

Habe erstmal versucht die Gewinnfunktion zu ermitteln. In meiner Mitschrift steht dazu:
G(x) = E(x) - K(x) ; E(x) = x * p

Also:
G(x) = [mm] x^3-5x^2-28x+32 [/mm]
Die hat auch bei x= -4 eine Nullstelle.

Dann dachte ich mir die Gewinnschwelle müßte ein Sattelpunkt sein.
Gibt hier aber nur einen Wendepunkt bei x= [mm] \bruch{10}{6} [/mm] da:

G'= [mm] 3x^2-10x-40 [/mm]
[mm] x_1 \approx [/mm] 5,68
[mm] x_2 \approx [/mm] -2,35

G''=6x-10 [mm] x_w [/mm] = [mm] \bruch{10}{6} [/mm]
G''' = 6 [mm] \not= [/mm] 0

Nunja weiter bin ich nicht gekommen :( .

Grundsätzlich falsch der Ansatz ?

Danke für Hilfe
Grüße
Lars

Analytiker hat die Diskussion in das Finanzmathematik Forum verschoben!

        
Bezug
Gewinnfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Di 14.08.2007
Autor: Analytiker

Hi Lars,

> a. Es ist die Gewinnfunktion zu ermitteln.
> b. Gewinnschwelle und Gewinngrenze sind zu ermitteln.
> c. Das Gewinnmaximum [mm]G_M[/mm] ist zu errechnen.
> d. Begründen Sie, dass die Grenzkosten für die Gewinnmaximierende Absatzmenge gleich dem Preis ist.
> e. Erlös-, Kosten- und Gewinnfunktion sind in einer Graphik zu skizzieren.

zu a.

> Habe erstmal versucht die Gewinnfunktion zu ermitteln. In meiner Mitschrift steht dazu:
> G(x) = E(x) - K(x) ; E(x) = x * p

[ok] genau das ist der Ansatz um G(x) zu ermitteln!

> G(x) = [mm]x^3-5x^2-28x+32[/mm]
> Die hat auch bei x= -4 eine Nullstelle.

Leider nicht ganz korrekt! Es muss heißen: G(x) = [mm] (40x)-(x^{3}-5x^{2}+12x+32) [/mm]
-> G(x) = [mm] -x^{3}+5x^{2}+28x-32 [/mm] (auch hier ist eine Nullstelle bei x=-4, aber nach unten geöffnet... von entscheidender Bedeutung für spätere Aufgaben)!

zu b.

> Dann dachte ich mir die Gewinnschwelle müßte ein Sattelpunkt sein.

Die Gewinnschwelle ist grundsätzlich eine Nullstelle der G(x)... Sie muss nicht zwingend ein Sattelpunkt sein. Es kommt denn darauf an, welchen Grades die Kosten- und Erlösfunktionen sind. Also grundsätzlich dann einfach die Nullstellen von G(x) ermitteln. Dabei werden grundsätzlich nur positive Werte betrachtet, also von [mm] [0;+\infty] [/mm] . In deiner Aufgabe wurde aber schon freundlicherweise ein Definitionsbereich vorgegeben, der alle negativen Werte ausschließt. Macht auch Sinn, da kein Gewinn erzielt werden kann, wenn negative Mengen abgesetzt werden... ;-)!

> G'= [mm]3x^2-10x-40[/mm]
> [mm]x_1 \approx[/mm] 5,68
> [mm]x_2 \approx[/mm] -2,35

[notok] einfach ersteinmal G(x)=0 setzen. Dann bekommst du [mm] x_{1}= [/mm] -4 und [mm] x_{2}= [/mm] 1 und [mm] x_{3}= [/mm] 8
Dies sind deine potentiellen Gewinngrenzen- und Schwellen. Da wir schonmal einen negativen Wert haben, müssen wir diesen nicht weiter betrachten, aus oben genannter Nichtnegativitätsbedingung! Also ist die Gewinnschwelle bei x=1 und die Gewinngrenze bei x=8

zu c.

Wenn du das Gmax ermitteln willst, musst du die Extrema von G(x) in Zusammenhang deines Definitionsbereiches ermitteln. Also wir kennen G(x), G'(x) und wissen das 0 [mm] \le [/mm] x [mm] \le [/mm] 12! Du musst jetzt die Extrema über G'(x) ermitteln. -> [mm] G'(x)=3x^{2}-10x-28 [/mm] -> [mm] x_{1} \approx [/mm] 5,146 und [mm] x_{2} \approx [/mm] -1,813! Wichtig: Für späteren Aufgabenteile bitte mit dem mathematisch korrekten (Werte mit Wurzel) weiterechnen, und nicht mit den [mm] \approx [/mm] Werten... Würde in deiner Aufgabe kein Definitionsbereich gegeben sein, wäre [mm] x_{1} [/mm] deine gewinnmaximale Menge... Probieren wir den Wert mal aus, und sehen was herauskommt:

G(5,146) [mm] \approx [/mm] 108,22

Jetzt hast du das Gmax ermittelt, naämlich (5,146.../108,22...)! Mit dieser Erlös- und Kostenfunktion ist kein höherer Gewinn (in unserem Definitionsbereich) von [mm] \approx [/mm] 108,22... Geldeinheiten zu erzielen. Der Zusammenhang wird noch ein bissl klarer wenn du die Graphen gezeichnet hast!

zu d.

Wir sollen beweisen, das K'(x) der gewinnmaximalen Menge = p ist.

Also setzen wir ein K'(5,146)=39,98... wir haben ja jetzt mit gerundeten Werten weiteregerechnet, aber es geht dann genau auf, das gilt: K'(x) = p ! Tja, aber wir sollen begründen warum das so ist. Mathematisch bewiesen haben wir es, aber den Grund kenn wir noch nicht... Also: Der Sachverhalt K' = p gilt für den vollkommenden Markt, also dort wo viel Wettbewerb und Verdrängung herrscht. Beim Mengenanpasser (also der Marktteilnehmer der sich dem Markt anpasst) wird der Preis gleich den Grenzkosten gesetzt um ein Gewinnmaximum zu erzielen. Das sieht beim Monopol dann schon wieder ganz anders aus, da gilt nämlich nicht K' = p

zu e.

Hier einfach alle Funktionen aufschreiben, also G(x), E(x) und K(x) und dann eine Wertetabelle von [0;12] erstellen... Dann einzeichnen. Könnte so aussehen:

gelb: Gewinnfunktion
blau: Kostenfunktion
rot: Erlösfunktion

[Dateianhang nicht öffentlich]

Ich hoffe es ist alles vertsändlich?

Liebe Grüße
Analytiker
[lehrer]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]