www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGibt es unendlich viele...?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Gibt es unendlich viele...?
Gibt es unendlich viele...? < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gibt es unendlich viele...?: Knifflige Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:59 Mi 13.02.2008
Autor: ThomasR

Aufgabe
Gibt es unendlich viele ganze Zahlen n mit der Eigenschaft, dass
n²-1 durch höchstens zwei verschiedene Primzahlen teilbar ist, gleichzeitig aber nicht durch das Quadrat einer ungeraden Primzahl?

Ich habe mich seit knapp drei Jahren nicht mehr mit Zahlentheorie beschäftigt und sitze hier dementsprechend wie vor einem Buch mit sieben Siegeln.
Hat jemand eine Idee, wie ich mich der Aufgabe nähern könnte, bzw. welche Zusammenhänge aus der Zahlentheorie mich da richtung Ziel bringen könnten?
Dass jemand von euch die Aufgabe komplett löst und dann hier postet kann ich natürlich nicht verlangen, aber falls das doch jemand schafft hätte ich auch nichts dagegen. :)
Aber ich glaube, dass die Aufgabe nicht ganz einfach ist.

-Gruß Thomas

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://matheplanet.com

        
Bezug
Gibt es unendlich viele...?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Mi 13.02.2008
Autor: abakus


> Gibt es unendlich viele ganze Zahlen n mit der Eigenschaft,
> dass
> n²-1 durch höchstens zwei verschiedene Primzahlen teilbar
> ist, gleichzeitig aber nicht durch das Quadrat einer
> ungeraden Primzahl?
>  Ich habe mich seit knapp drei Jahren nicht mehr mit
> Zahlentheorie beschäftigt und sitze hier dementsprechend
> wie vor einem Buch mit sieben Siegeln.
> Hat jemand eine Idee, wie ich mich der Aufgabe nähern
> könnte, bzw. welche Zusammenhänge aus der Zahlentheorie
> mich da richtung Ziel bringen könnten?
> Dass jemand von euch die Aufgabe komplett löst und dann
> hier postet kann ich natürlich nicht verlangen, aber falls
> das doch jemand schafft hätte ich auch nichts dagegen. :)
> Aber ich glaube, dass die Aufgabe nicht ganz einfach ist.
>
> -Gruß Thomas
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>   http://matheplanet.com

[mm] n^2-1 [/mm] hat auf alle Fälle zwei Teiler, nämlich (n-1) und (n+1). Wenn diese Faktoren noch weitere Primteiler hätten, dann hätte [mm] n^2-1 [/mm] mehr als zwei Primteiler (oder zwei Primteile, von denen mindestens einer mehrfach vorkommt wie z.B. in [mm] 99=(10+1)(10-1)=11*3^2 [/mm] ). Da [mm] n^2-1 [/mm] aber nicht durch das Quadrat einer Primzahl teilbar sein darf,  müssen (n-1) und (n+1) selbst Primzahlen sein, wenn es nur zwei Primteiler geben soll.

Die Frage ist also: gibt es unendlich viele Primzahlzwillinge (Primzahlpaare mir der Differenz 2).
Ich kann noch beisteuern, dass jede Primzahl>3 in der Form 6k [mm] \pm [/mm] 1 [mm] (k\in\IN) [/mm] dargestellt werden kann.

Ich hoffe das reicht dir, um gezielter recherchieren zu können.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]