www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGitter - Kovolumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Gitter - Kovolumen
Gitter - Kovolumen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gitter - Kovolumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:05 Sa 10.11.2012
Autor: Loko

Aufgabe
p prim. Zeige, es gibt [mm] u,v\in\IZ [/mm] s.d. [mm] u^{2}+v^{2}+1=0 [/mm] mod p, und dass das Gitter:
[mm] $L_{u,v} [/mm] = [mm] {(a,b,c,d)\in\IZ^{4} : c \equiv ua+vb$ $mod$ $p$ und $d \equiv ub-va$ $mod$ $p}$ [/mm]
Kovolumen [mm] p^{2} [/mm] in [mm] \IR^{4} [/mm] hat.

Hallo!

Ich habe den ersten Teil, also, dass u und v existieren, geschafft.
(Wenn das jemand sehen möchte sagt bescheid.)
Jetzt hängt es bei volumen und Kovolumen. Ich weiß einfach nicht, wie ich damit arbeiten kann.
Hier meine Idee/Ansatz:

Wir haben das Standard-Gitter [mm] \IZ^{4} [/mm] in [mm] \IR^{4}. [/mm] Das [mm] L_{u,v} [/mm] ist von [mm] \IZ^{4} [/mm] ein unter-Gitter. In der Vorlesung haben uns dann Theoreme gegeben, dass:
[mm] covol(L_{u,v}) [/mm] = [mm] vol(\IR^{4}/L_{u,v}) [/mm] = [mm] vol(\IR^{4}/\IZ^{4})*|\IZ^{4}/L_{u,v}|. [/mm]
Als Ergebnis muss ja [mm] p^{2} [/mm] herauskommen. Aber ich sehe nicht, wo das in dieser Formel entsteht....

Ich hoffe jemand kann mir ein paar Tipps geben :)
Lg Loko!


        
Bezug
Gitter - Kovolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Sa 10.11.2012
Autor: felixf

Moin!

> p prim. Zeige, es gibt [mm]u,v\in\IZ[/mm] s.d. [mm]u^{2}+v^{2}+1=0[/mm] mod
> p, und dass das Gitter:
>  [mm]L_{u,v} = {(a,b,c,d)\in\IZ^{4} : c \equiv ua+vb[/mm] [mm]mod[/mm] [mm]p[/mm] und
> [mm]d \equiv ub-va[/mm] [mm]mod[/mm] [mm]p}[/mm]
>  Kovolumen [mm]p^{2}[/mm] in [mm]\IR^{4}[/mm] hat.
>  
> Ich habe den ersten Teil, also, dass u und v existieren,
> geschafft.

Schoen :)

>  (Wenn das jemand sehen möchte sagt bescheid.)
>  Jetzt hängt es bei volumen und Kovolumen. Ich weiß
> einfach nicht, wie ich damit arbeiten kann.
>  Hier meine Idee/Ansatz:
>  
> Wir haben das Standard-Gitter [mm]\IZ^{4}[/mm] in [mm]\IR^{4}.[/mm] Das
> [mm]L_{u,v}[/mm] ist von [mm]\IZ^{4}[/mm] ein unter-Gitter. In der Vorlesung
> haben uns dann Theoreme gegeben, dass:
>  [mm]covol(L_{u,v})[/mm] = [mm]vol(\IR^{4}/L_{u,v})[/mm] =
> [mm]vol(\IR^{4}/\IZ^{4})*|\IZ^{4}/L_{u,v}|.[/mm]
>  Als Ergebnis muss ja [mm]p^{2}[/mm] herauskommen. Aber ich sehe
> nicht, wo das in dieser Formel entsteht....

Nun, da [mm] $vol(\IR^4/\IZ^4) [/mm] = 1$ ist, muss [mm] $\IZ^4/L_{u,v}$ [/mm] genau [mm] $p^2$ [/mm] Elemente haben.

Alternativ kannst du eine Basis von [mm] $L_{u,v}$ [/mm] bestimmen und die Determinante der Matrix berechnen, in der du die Basisvektoren schreibst -- das Ergebnis ist bis auf dem Betrag gleich dem Kovolumen. Aber k.A. ob ihr dieses Resultat hattet :)

Aber zum Thema [mm] $\IZ^4/L_{u,v}$. [/mm] Wenn du dir die Gleichungen $c [mm] \equiv [/mm] u a + b v [mm] \pmod{p}$ [/mm] und $d [mm] \equiv [/mm] u b - a v [mm] \pmod{p}$ [/mm] anschaust, siehst du, dass modulo $p$ die Werte von $c$ und $d$ eindeutig durch $a$ und $b$ bestimmt sind. Du kannst also fuer jedes Paar $(a, b) [mm] \in \IZ^2$ [/mm] alle $(c, d) [mm] \in \IZ^2$ [/mm] mit $(a, b, c, d) [mm] \in L_{u,v}$ [/mm] genau beschreiben: moduo $p [mm] \IZ \times [/mm] p [mm] \IZ$ [/mm] gibt es genau ein solches Paar $(c, d)$.

Mehr moechte ich jetzt nicht verraten, bis auf [mm] $|\IZ^2 [/mm] / (p [mm] \IZ \times [/mm] p [mm] \IZ)| [/mm] = [mm] p^2$ [/mm] :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]