www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisGleichheit von Integralen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Gleichheit von Integralen
Gleichheit von Integralen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichheit von Integralen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Mi 29.05.2013
Autor: Richie1401

Aufgabe
Zeigen Sie, dass gilt

[mm] \frac{2}{i}\int\limits_{|z|=1}\frac{1}{z^2+4z+1}dz=\int_{0}^{2\pi}\frac{1}{2+\cos x}dx [/mm]

und bestimmen Sie den Wert des Integrals.

Guten Abend liebe MR-Gemeinde,

in der neuen Serie ist obige Aufgabe zu finden. Voller Tatendrang stürzte ich mich ins Getümmel und wollte sie lösen.

Ich habe den Kreis parametrisiert mit [mm] z(t)=e^{i\pi t},\ t\in(0,2\pi) [/mm]

Damit erhalte ich aber nur:
[mm] \int_{0}^{2\pi}\frac{2 \pi e^{i\pi t}}{1+4e^{i\pi t}+1}dt=\int_{0}^{2\pi}\frac{\pi e^{i\pi t}}{1+2e^{i\pi t}}dt [/mm]


Ich habe das ganze auch mal durch den Rechner gejagt und erhalte auch vollkommen unterschiedliche Ergebnisse. Selbst, wenn ich die Integrale der Ausgangsgleichung überprüfe kommt man auf keinen grünen Zweig.

Könnt ihr das bestätigen, dass die Aufgabenstellung, also insbesondere Gleichheit der Integrale, nicht richtig ist?

Schönen Abend!

        
Bezug
Gleichheit von Integralen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Mi 29.05.2013
Autor: MathePower

Hallo Richie1401,

> Zeigen Sie, dass gilt
>  
> [mm]\frac{2}{i}\int\limits_{|z|=1}\frac{1}{z^2+4z+1}dz=\int_{0}^{2\pi}\frac{1}{2+\cos x}dx[/mm]
>  
> und bestimmen Sie den Wert des Integrals.
>  Guten Abend liebe MR-Gemeinde,
>  
> in der neuen Serie ist obige Aufgabe zu finden. Voller
> Tatendrang stürzte ich mich ins Getümmel und wollte sie
> lösen.
>  
> Ich habe den Kreis parametrisiert mit [mm]z(t)=e^{i\pi t},\ t\in(0,2\pi)[/mm]
>  


Hier musst Du die Paramaterisierung [mm]z\left(t\right)=e^{it}, \ t\in(0,2\pi)[/mm] wählen.


> Damit erhalte ich aber nur:
>  [mm]\int_{0}^{2\pi}\frac{2 \pi e^{i\pi t}}{1+4e^{i\pi t}+1}dt=\int_{0}^{2\pi}\frac{\pi e^{i\pi t}}{1+2e^{i\pi t}}dt[/mm]
>  
>
> Ich habe das ganze auch mal durch den Rechner gejagt und
> erhalte auch vollkommen unterschiedliche Ergebnisse.
> Selbst, wenn ich die Integrale der Ausgangsgleichung
> überprüfe kommt man auf keinen grünen Zweig.
>  
> Könnt ihr das bestätigen, dass die Aufgabenstellung, also
> insbesondere Gleichheit der Integrale, nicht richtig ist?

>


Die Integrale in der Aufgabenstellung sind gleich.

  

> Schönen Abend!


Gruss
MathePower

Bezug
                
Bezug
Gleichheit von Integralen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Mi 29.05.2013
Autor: Richie1401

Hallo Mathepower,

danke - jetzt fällt es mir auch auf....und ich verzweifel schon daran.

Danke für dein waches Auge!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]