www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieGleichheit von Konvenxer Hülle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Gleichheit von Konvenxer Hülle
Gleichheit von Konvenxer Hülle < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichheit von Konvenxer Hülle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Do 03.12.2015
Autor: Raspery21

Aufgabe
Seien $X$ der affine Raum [mm] $\IR^2$ [/mm] und $A=(1,2)$, $B=(2,1)$, $C=(3,6)$, $D=(2,3)$, $A'=(1,-1)$, $B'=(10,-1)$, $C'=(5,-5)$ Punkte aus $X$.

Zeigen Sie, dass für die konvexen Hüllen gilt:
[mm] $\mathfrak{C}(\{ A,B,C \}) [/mm] = [mm] \mathfrak{C}(\{A,B,C,D\})$. [/mm]

Das [mm] $\mathfrak{C}(\{ A,B,C \}) \subseteq \mathfrak{C}(\{A,B,C,D\})$ [/mm] ist trivial.
Das Problem besteht eher bei [mm] $\mathfrak{C}(\{ A,B,C \})\supseteq \mathfrak{C}(\{A,B,C,D\})$. [/mm]

Zu zeigen ist eigentlich nur folgendes. [mm] $D\in \mathfrak{C}(\{ A,B,C \})$, [/mm] bzw. $D$ ist innerer Punkt.
Das ganze habe ich auch bereits über das Baryzentrum gelöst. Der Punkt D ist witzigerweise hier genau das Baryzemtrum des Systems $((A,B,C),(1,1,1))$.
Das habe ich aber nur geahnt, weil es anschaulich (durch Zeichnung) ganz danach aussieht.

Ich müsste das ganze aber doch auch zeigen können, wenn $D$ nicht grade das Baryzentrum ist.
Und genau da liegt mein Problem. Ich weiss nicht wie ich das ganze anstellen soll.
Kann mir da vll. jemand weiterhelfen?

Mit freundlichen Grüßen,
Raspery


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichheit von Konvenxer Hülle: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Do 03.12.2015
Autor: leduart

Hallo
nenne den Vektor AB a den AC b
jeder Punkt im inneren von ABC lässt sich als P= A+r*a+s*b darstellen mit r+s<1
oder du versiehst die Ecken mit Gewichten, r,s,t  dann ist ein innerer Punkt  (r*A+s*B+t*C)/(r+s+t)
Gruss ledum

Bezug
        
Bezug
Gleichheit von Konvenxer Hülle: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Fr 04.12.2015
Autor: fred97

Um  $ [mm] D\in \mathfrak{C}(\{ A,B,C \}) [/mm] $ zu zeigen, genügt es zu zeigen, dass das LGS

2=a+2b+3c

2=2a+b+6c

eine Lösung mit a,b,c [mm] \ge [/mm] 0 und a+b+c [mm] \le [/mm] 1 hat.

Das aber ist der Fall. Z.B. ist

  a=0, [mm] b=\bruch{1}{3}, c=\bruch{4}{9} [/mm]

eine solche Lösung. Es gibt viele weitere.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]