www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGleichheit von Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Gleichheit von Mengen
Gleichheit von Mengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichheit von Mengen: Frage
Status: (Frage) beantwortet Status 
Datum: 11:47 So 09.01.2005
Autor: Tito

Hallo

Meine Aufgabe, bei der ich nicht weiter komme, ist folgende:

Sei V ein euklidischer bzw. unitärer Vektorraum,
[mm] U\subset [/mm] V Untervektorraum von V

Zeige : [mm] (U^{orthogonal})^{orthogonal} [/mm] = U

(Habe den Quelltext für orthogonal nicht gefunden)

Ich habe mir folgendes überlegt, da [mm] U^{orthogonal} [/mm] so definiert ist
[mm] U^{orthogonal}:= [/mm]  { v [mm] \in [/mm] V : v orthogonal u für alle u [mm] \in [/mm] U }
müsste
[mm] (U^{orthogonal})^{orthogonal}:= [/mm] { v [mm] \in [/mm] V : v orthogonal u für alle u [mm] \in U^{orthogonal} [/mm] }

[mm] "\subset" [/mm] : Sei v [mm] \in (U^{orthogonal})^{orthogonal} [/mm] , w [mm] \in [/mm] U und u [mm] \in U^{orthogonal} [/mm]
dann ist
[mm] =v_1 u_1 [/mm] + [mm] \ldots [/mm] + [mm] v_m u_m [/mm] = 0 = [mm] w_1u_1 [/mm] + [mm] \ldots [/mm] + [mm] w_m u_m [/mm] = <w,u>
[mm] \gdw u_1 (v_1 [/mm] - [mm] w_1)+ \ldots [/mm] + [mm] u_m (v_m [/mm] - [mm] w_m) [/mm] = 0

(Dies ist natürlich nur für euklidischen VR, aber im unitären ändert sich ja nur, das der zweite Eingang konjungiert wird und somit das gleich bleibt was ich aufgeschrieben habe)

, ist das richtig was ich bis hier her gemacht habe?
Wie komme ich weiter, oder gibt es eine bessere Möglichkeit zu zeigen das [mm] U^{orthogonal})^{orthogonal} [/mm] = U ?

Gruß
Tito

        
Bezug
Gleichheit von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 So 09.01.2005
Autor: Hanno

Hallo Tito!

Im Beutelspacher wird es wie folgt erklärt (der LaTeX Befehl für "orthogonal" ist übrigens "perp", was für "perpendicular" - zu deutsch "senkrecht" -  steht):
Sie Menge [mm] $U^{\perp}$ [/mm] beinhaltet genau die Elemente aus $V$, die zu allen Elementen aus $U$ orthogonal sind. Die Menge [mm] $U^{\perp\perp}$ [/mm] beinhaltet genau die Elemente aus V, die zu allen Elementen aus [mm] $U^{\perp}$ [/mm] orthogonal stehen. Betrachten wir nun ein Element [mm] $u\in [/mm] U$. Nach Definition steht jedes Element aus [mm] $U^{\perp}$ [/mm] orthogonal auf $u$, und da die Relation [mm] $\perp$ [/mm] symmetrisch ist, steht auch $u$ orthogonal auf jedem Element aus [mm] $U^{\perp}$. [/mm] Genau das ist allerdings die Bedingung dafür, dass [mm] $u\in U^{\perp\perp}$ [/mm] gilt. Daraus folgt, dass [mm] $U\subset U^{\perp\perp}$. [/mm] Klar soweit?
Über die Dimensionsformel [mm] $dim(U)=k\Rightarrow dim\left( U^{\perp}\right) [/mm] =n-k$ folgt dann sofort [mm] $dim(U)=dim\left( U^{\perp\perp}\right) [/mm] =k$ und somit [mm] $U=U^{\perp\perp}$. [/mm]

Liebe Grüße,
Hanno

Bezug
                
Bezug
Gleichheit von Mengen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:04 So 09.01.2005
Autor: Tito

Danke Hanno,

ja habs verstanden.

Gruß
Tito

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]