Gleichheit zeigen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:03 Mi 10.12.2008 | Autor: | barsch |
Aufgabe | Es soll gezeigt werden, dass:
[mm] \summe_{k=1}^{n}\bruch{n^2}{n-1}*\bruch{k}{n}*(1-\bruch{k}{n})*\vektor{n \\ k}*p^k*(1-p)^{n-k}=n*p*(1-p) [/mm] |
Hi,
ich habe also erst einmal angefangen umzuformen und zusammenzufassen. Bisher bin ich soweit gekommen:
[mm] \summe_{k=1}^{n}\bruch{n^2}{n-1}*\bruch{k}{n}*\red{(1-\bruch{k}{n})*\vektor{n \\ k}}*p^k*(1-p)^{n-k}
[/mm]
[mm] =\summe_{k=1}^{n}\bruch{n^2}{n-1}*\bruch{k}{n}*\red{(\bruch{n}{n}-\bruch{k}{n})*\bruch{n!}{k!*(n-k)!}}*p^k*(1-p)^{n-k}
[/mm]
[mm] =\summe_{k=1}^{n}\bruch{n^2}{n-1}*\bruch{k}{n}*\red{\bruch{n-k}{n}*\bruch{n!}{k!*(n-k)!}}*p^k*(1-p)^{n-k}
[/mm]
[mm] =\summe_{k=1}^{n}\blue{\bruch{n*k}{n-1}}*\red{\bruch{n-k}{n}*\bruch{n!}{k!*(n-k)!}}*p^k*(1-p)^{n-k}
[/mm]
[mm] =\summe_{k=1}^{n}\red{n*\bruch{(n-2)!}{(k-1)!*(n-k-1)!}}*p^k*(1-p)^{n-k}
[/mm]
[mm] =\summe_{k=1}^{n}n*\red{\vektor{n-2\\ k-1}}*p^k*(1-p)^{n-k}
[/mm]
hier hänge ich fest und weiß weder vor noch zurück.
Vielleicht könnt ihr mir auf die Sprünge helfen?
[mm] \red{\text{Edit: Bin auch für andere Ansätze offen}} [/mm]
MfG barsch
Ich habe diese Frage in keinem anderen Forum auf anderen Internetseiten gestellt.
|
|
|
|
Na, das ist doch schon alles sehr gut. Die farbige Darstellung ist auch hilfreich, um nachzuvollziehen, was Du da tust. Danke für die Mühe!
> Es soll gezeigt werden, dass:
>
> [mm]\summe_{k=1}^{n}\bruch{n^2}{n-1}*\bruch{k}{n}*(1-\bruch{k}{n})*\vektor{n \\ k}*p^k*(1-p)^{n-k}=n*p*(1-p)[/mm]
>
> Hi,
>
> ich habe also erst einmal angefangen umzuformen und
> zusammenzufassen. Bisher bin ich soweit gekommen:
>
>
> [mm]\summe_{k=1}^{n}\bruch{n^2}{n-1}*\bruch{k}{n}*\red{(1-\bruch{k}{n})*\vektor{n \\ k}}*p^k*(1-p)^{n-k}[/mm]
>
>
> [mm]=\summe_{k=1}^{n}\bruch{n^2}{n-1}*\bruch{k}{n}*\red{(\bruch{n}{n}-\bruch{k}{n})*\bruch{n!}{k!*(n-k)!}}*p^k*(1-p)^{n-k}[/mm]
>
> [mm]=\summe_{k=1}^{n}\bruch{n^2}{n-1}*\bruch{k}{n}*\red{\bruch{n-k}{n}*\bruch{n!}{k!*(n-k)!}}*p^k*(1-p)^{n-k}[/mm]
>
> [mm]=\summe_{k=1}^{n}\blue{\bruch{n*k}{n-1}}*\red{\bruch{n-k}{n}*\bruch{n!}{k!*(n-k)!}}*p^k*(1-p)^{n-k}[/mm]
>
> [mm]=\summe_{k=1}^{n}\red{n*\bruch{(n-2)!}{(k-1)!*(n-k-1)!}}*p^k*(1-p)^{n-k}[/mm]
Bis hier perfekt bis auf die Tatsache, dass Du einfach k und n-k herauskürzt. Hast Du das genauer überlegt? k ist erlaubt, weil die Summe bei k=1 losgeht (an diese Begründung wirst Du später womöglich denken müssen!), n-k aber wird im Verlauf der Summation zu Null. Was tun?
Da gibt es nur eine Lösung. Dieses problematische Summationsglied muss einzeln herausgezogen werden, damit die übrige Summe von k=1 bis n-1 weiter behandelt werden kann.
> [mm]=\summe_{k=1}^{n}n*\red{\vektor{n-2\\ k-1}}*p^k*(1-p)^{n-k}[/mm]
>
> hier hänge ich fest und weiß weder vor noch zurück.
Glaube ich. Nimm mal den letzten Summationsschritt, k=n. Das zu summierende Glied sieht so aus:
[mm] n*\vektor{n-2\\ \red{n-1}}*p^n*(1-p)^0
[/mm]
Dieser Binomialkoeffizient ist nicht definiert, da er (-1)! enthält...
Folgendes ist noch zu tun: zieh das problematische Glied aus der Summe, nimm das konstante n davor, ersetze den Lauf k=1 bis (dann noch) n-1 durch j=0 bis n-2, schau Dir die Summe an und finde eine Ersetzung ohne Summenzeichen oder "..."-Pünktchen.
Dann bist Du fertig.
Deine Zusammenfassung von Termen ist wirklich gut, Dir fehlt nur das Ende und vielleicht die Sorgfalt der Fallunterscheidung beim Kürzen.
> Vielleicht könnt ihr mir auf die Sprünge helfen?
>
> MfG barsch
LG,
rev
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:23 Do 11.12.2008 | Autor: | barsch |
Hi,
> Na, das ist doch schon alles sehr gut. Die farbige
> Darstellung ist auch hilfreich, um nachzuvollziehen, was Du
> da tust. Danke für die Mühe!
ich habe zu Danken.
Im Laufe der Zeit habe ich gelernt, was es heißt unübersichtliche Rechnungen zu überschauen. Deswegen versuche ich mir jetzt immer die größte Mühe zu geben alles nachvollziehbar zu schreiben.
> [mm]=\summe_{k=1}^{n}\red{n*\bruch{(n-2)!}{(k-1)!*(n-k-1)!}}*p^k*(1-p)^{n-k}[/mm]
>
> Bis hier perfekt bis auf die Tatsache, dass Du einfach k
> und n-k herauskürzt. Hast Du das genauer überlegt? k ist
> erlaubt, weil die Summe bei k=1 losgeht (an diese
> Begründung wirst Du später womöglich denken müssen!), n-k
> aber wird im Verlauf der Summation zu Null. Was tun?
> Da gibt es nur eine Lösung. Dieses problematische
> Summationsglied muss einzeln herausgezogen werden, damit
> die übrige Summe von k=1 bis n-1 weiter behandelt werden
> kann.
Okay, soweit habe ich gar nicht gedacht.
> > [mm]=\summe_{k=1}^{n}n*\red{\vektor{n-2\\ k-1}}*p^k*(1-p)^{n-k}[/mm]
>
> >
> > hier hänge ich fest und weiß weder vor noch zurück.
>
> Glaube ich. Nimm mal den letzten Summationsschritt, k=n.
> Das zu summierende Glied sieht so aus:
> [mm]n*\vektor{n-2\\ \red{n-1}}*p^n*(1-p)^0[/mm]
>
> Dieser Binomialkoeffizient ist nicht definiert, da er (-1)!
> enthält...
>
> Folgendes ist noch zu tun: zieh das problematische Glied
> aus der Summe, nimm das konstante n davor, ersetze den Lauf
> k=1 bis (dann noch) n-1 durch j=0 bis n-2, schau Dir die
> Summe an und finde eine Ersetzung ohne Summenzeichen oder
> "..."-Pünktchen.
> Dann bist Du fertig.
Das werde ich mir nachher noch einmal ansehen und gegebenenfalls bei Bedarf noch einmal darauf zurückkommen.
Gute Nacht,
barsch
|
|
|
|
|
Hallo barsch,
wieder gute Vorarbeit!
> > > [mm]=\summe_{k=1}^{n}n*\red{\vektor{n-2\\ k-1}}*p^k*(1-p)^{n-k}[/mm]
Ich nehme mal grün als Korrekturfarbe, sonst muss ich das ganze Rot entfernen...
> ...
>
> [mm]=\summe_{k=1}^{n}\blue{\bruch{n\cdot{}k}{n-1}}\cdot{}\red{\bruch{n-k}{n}\cdot{}\bruch{n!}{k!\cdot{}(n-k)!}}\cdot{}p^k\cdot{}(1-p)^{n-k}[/mm]
>
>
> [mm]=\summe_{k=1}^{n-1}n\cdot{}\red{\vektor{n-2\\ k-1}}\cdot{}p^k\cdot{}(1-p)^{n-k}+\green{n*(n-n)*\bruch{(n-2)!}{(n-1)!*(n-n)!}}[/mm]
Das herausgezogene Glied stimmt nicht. Geschickter wäre auch, Klammern zu setzen, um zu zeigen, welcher Bereich zur Summe gehört und welcher nicht, oder aber das herausgezogene Glied vor die Summe zu setzen. All das ist eine Notationsfrage. Der eigentliche Rechenfehler hat aber keine Auswirkung, ...
> [mm]=\summe_{k=1}^{n-1}n\cdot{}\red{\vektor{n-2\\ k-1}}\cdot{}p^k\cdot{}(1-p)^{n-k}+\green{0}[/mm]
... da das herausgezogene Glied sich trotz allem als Null erweist.
> [mm]=\summe_{k=1}^{n-1}n\cdot{}\red{\vektor{n-2\\ k-1}}\cdot{}p^k\cdot{}(1-p)^{n-k}[/mm]
>
>
> Edit: Idee!
>
> [mm]\red{\text{Ich kann ja folgendes machen:}}[/mm]
>
> Nun die angesprochene Indexverschiebung:
>
> [mm]=\summe_{k=0}^{n-2}n\cdot{}\vektor{n-2\\ k}\cdot{}p^{k\red{+1}}\cdot{}(1-p)^{n-\red{(k+1)}}[/mm]
>
> [mm]=n\cdot{}p*\summe_{k=0}^{n-2}\vektor{n-2\\ k}\cdot{}p^{k}\cdot{}(1-p)^{n-\red{k-1}}[/mm]
>
> [mm]=n\cdot{}p*\red{(1-p)}*\summe_{k=0}^{n-2}\vektor{n-2\\ k}\cdot{}p^{k}\cdot{}(1-p)^{n-k\red{-2}}[/mm]
>
> [mm]=n\cdot{}p*(1-p)*\summe_{k=0}^{\red{n-2}}\vektor{\red{n-2}\\ k}\cdot{}p^{k}\cdot{}(1-p)^{\red{n-2}-k}[/mm]
Bis hierhin ist die Umformung ganz vorbildlich!
> [mm]=n\cdot{}p*(1-p)*\summe_{k=0}^{i}\vektor{\red{i}\\ k}\cdot{}p^{k}\cdot{}(1-p)^{\red{i}-k},[/mm]
> da
>
> [mm]\summe_{k=0}^{i}\vektor{\red{i}\\ k}\cdot{}p^{k}\cdot{}(1-p)^{\red{i}-k}[/mm]
> Zähldichte ist [mm]\summe_{k=0}^{i}\vektor{\red{i}\\ k}\cdot{}p^{k}\cdot{}(1-p)^{\red{i}-k}=1[/mm]
> und somit:
>
> [mm]n\cdot{}p*(1-p)*\summe_{k=0}^{i}\vektor{\red{i}\\ k}\cdot{}p^{k}\cdot{}(1-p)^{\red{i}-k}=n\cdot{}p*(1-p)[/mm]
All das verstehe ich überhaupt nicht. Wozu der Rekurs auf die Zähldichte? Dein Ergebnis ist richtig, aber es braucht eine Zusatzinformation, die eigentlich nicht nötig ist. Ich forme mal von oben aus weiter um, nur einen Schritt Summenrechnung (binomisch), ab da einfache Rechnung:
[mm] =n\cdot{}p*(1-p)*\summe_{k=0}^{\red{n-2}}\vektor{\red{n-2}\\ k}\cdot{}p^{k}\cdot{}(1-p)^{\red{n-2}-k}=\green{n*p*(1-p)*(p+(1-p))^{n-2}=n*p*(1-p)*1^{n-2}=n*p*(1-p)}
[/mm]
>
Süß. Den kannte ich noch gar nicht.
> Jetzt nur noch ein abschließendes "ja, so kann man das
> machen", und ich bin glücklich
Da will ich Dir nicht im Weg stehen, bloß weil ich es nicht verstehe. Auf meinem Weg kommt ja das gleiche heraus, so dass Du wahrscheinlich Recht hast.
> MfG barsch
LG, rev
|
|
|
|