Gleichm. Konverg. Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:35 Mi 09.08.2017 | Autor: | X3nion |
Hallo zusammen!
Im Forster gibt es im Abschnitt "Gleichmäßige Konvergenz von Funktionenfolgen" eine Funktionsuntersuchung der auf [mm] \IR \backslash \IZ [/mm] definierten Funktion
F(x) := [mm] \summe_{n \in \IZ} \frac{1}{(x-n)^{2}}
[/mm]
wobei eine Summe [mm] \summe_{n\in\IZ} c_{n} [/mm] zu verstehen ist als [mm] \summe_{n=0}^{\infty} c_{n} [/mm] + [mm] \summe_{n=1}^{\infty} c_{-n}
[/mm]
Zum Thema Konvergenz und stetige Fortsetzung habe ich Fragen, wobei ich erstmal den Abschnitt abtippe und danach meine Fragen folgen:
1) Zur Konvergenz Sei R > 0 beliebig vorgegeben. Dann gilt für alle x [mm] \in [/mm] [-R, R] und alle |n| [mm] \ge [/mm] 2R
|x-n| [mm] \ge \frac{|n|}{2}, [/mm] also [mm] \frac{1}{(x-n)^{2}} \le \frac{4}{n^{2}}.
[/mm]
Da [mm] \summe_{n=1}^{\infty} \frac{1}{n^{2}} [/mm] < [mm] \infty, [/mm] folgt mit dem Weierstraß'schen Konvergenzkriterium, dass die Reihe [mm] \summe_{|n| \ge 2R} \frac{1}{(x-n)^{2}} [/mm] absolut und gleichmäßig konvergiert. Es folgt, dass die Reihe [mm] \summe_{n\in\IZ} \frac{1}{(x-n)^{2}} [/mm] auf jedem kompakten Intervall [a,b] [mm] \subset \IR, [/mm] in dem keine ganze Zahl liegt, absolut und gleichmäßig konvergiert, also F eine in [mm] \IR \backslash \IZ [/mm] eine stetige Funktion darstellt.
Fragen:
i) Gilt für alle x [mm] \in [/mm] [-R, R] und alle |n| [mm] \ge [/mm] 2R
|x-n| [mm] \ge \frac{|n|}{2} [/mm]
wegen [mm] \frac{|n|}{2} \le [/mm] |n|
und |n| [mm] \le [/mm] |x-n| eben für alle x [mm] \in [/mm] [-R, R], solange |n| [mm] \ge [/mm] 2R ist?
ii) In dem Intervall [-R, R] kann sich doch auch eine ganze Zahl befinden. Wieso wird hier nicht die Restriktion eingebunden, dass [-R, R] keine ganze Zahl erhalten darf? Im allgemeinen Fall [a,b] [mm] \subset \IR [/mm] wird dies ja gefordert.
-------------------
2) Periodizität und stetige Fortsetzbarkeit
Behauptung: Für alle x [mm] \in \IR \backslash \IZ [/mm] gilt:
[mm] \summe_{n\in\IZ} \frac{1}{(x-n)^{2}} [/mm] = [mm] (\frac{\pi}{sin(\pi x)})^{2}
[/mm]
Beweis: a) Wir zeigen dafür zunächst, dass die beide Seiten die Periode 1 haben, d.h. F(x) = F(x+1) für alle x [mm] \in \IR \backslash \IZ
[/mm]
(Hier habe ich die linke Seite verstanden)
Die rechte Seite hat natürlich auch die Periode 1, denn [mm] sin\pi(x+1) [/mm] = [mm] -sin(\pi [/mm] x)
Kurze Zwischenfrage Mit [mm] sin\pi(x+1) [/mm] = [mm] -sin(\pi [/mm] x) gilt doch nicht F(x) = F(x+1), sondern F(x+1) = -F(x). Wieso ist die Funktion dann auch periodisch mit Periode 1?
b) Es wird nun gezeigt:
Die Differenz aus linker und rechter Seite lässt sich stetig in alle Punkte n [mm] \in \IZ [/mm] fortsetzen. Wegen der Periodizität muss dies nur an der Stelle "0" gezeigt werden.
Es lässt sich nach einem vorangegangenen Beispiel die Funktion [mm] \frac{1}{sin^{2}(x)} [/mm] - [mm] \frac{1}{x^{2}} [/mm] stetig nach 0 fortsetzen (mit dem Wert 1/3). Ersetzt man hier die Variable x durch [mm] \pi [/mm] x und multipliziert mit [mm] \pi^{2}, [/mm] so erhält man, dass sich
[mm] (\frac{\pi}{sin \pi x})^{2} [/mm] - [mm] \frac{1}{x^{2}} [/mm]
stetig in den Nullpunkt fortsetzen lässt (mit dem Wert [mm] \frac{\pi^{2}}{3}. [/mm] Daraus folgt aber die Behauptung, denn
F(x) = [mm] \frac{1}{x^{2}} [/mm] + [mm] \summe_{|n| \ge 1} \frac{1}{(x-n)^{2}}, [/mm]
und die letzte Summe ist stetig im Nullpunkt.
Nun meine Fragen dazu:
Wieso erhält man aus
> dass sich
> [mm] (\frac{\pi}{sin \pi x})^{2} [/mm] - [mm] \frac{1}{x^{2}} [/mm]
> stetig in den Nullpunkt fortsetzen lässt (mit dem Wert [mm] \frac{\pi^{2}}{3}. [/mm]
> Daraus folgt aber die Behauptung, denn
> F(x) = [mm] \frac{1}{x^{2}} [/mm] + [mm] \summe_{|n| \ge 1} \frac{1}{(x-n)^{2}}, [/mm]
> und die letzte Summe ist stetig im Nullpunkt.
dass sich die Differenz aus rechter und linker Seite stetig in alle Punkte n [mm] \in \IZ [/mm] fortsetzen lässt?
Bin wie immer für Antworten dankbar!
Viele Grüße,
X3nion
|
|
|
|
> Hallo zusammen!
>
> Im Forster gibt es im Abschnitt "Gleichmäßige Konvergenz
> von Funktionenfolgen" eine Funktionsuntersuchung der auf
> [mm]\IR \backslash \IZ[/mm] definierten Funktion
>
> F(x) := [mm]\summe_{n \in \IZ} \frac{1}{(x-n)^{2}}[/mm]
>
> wobei eine Summe [mm]\summe_{n\in\IZ} c_{n}[/mm] zu verstehen ist
> als [mm]\summe_{n=0}^{\infty} c_{n}[/mm] + [mm]\summe_{n=1}^{\infty} c_{-n}[/mm]
>
> Zum Thema Konvergenz und stetige Fortsetzung habe ich
> Fragen, wobei ich erstmal den Abschnitt abtippe und danach
> meine Fragen folgen:
>
>
> 1) Zur Konvergenz Sei R > 0 beliebig vorgegeben. Dann gilt
> für alle x [mm]\in[/mm] [-R, R] und alle |n| [mm]\ge[/mm] 2R
>
> |x-n| [mm]\ge \frac{|n|}{2},[/mm] also [mm]\frac{1}{(x-n)^{2}} \le \frac{4}{n^{2}}.[/mm]
>
> Da [mm]\summe_{n=1}^{\infty} \frac{1}{n^{2}}[/mm] < [mm]\infty,[/mm] folgt
> mit dem Weierstraß'schen Konvergenzkriterium, dass die
> Reihe [mm]\summe_{|n| \ge 2R} \frac{1}{(x-n)^{2}}[/mm] absolut und
> gleichmäßig konvergiert. Es folgt, dass die Reihe
> [mm]\summe_{n\in\IZ} \frac{1}{(x-n)^{2}}[/mm] auf jedem kompakten
> Intervall [a,b] [mm]\subset \IR,[/mm] in dem keine ganze Zahl liegt,
> absolut und gleichmäßig konvergiert, also F eine in [mm]\IR \backslash \IZ[/mm]
> eine stetige Funktion darstellt.
>
>
>
> Fragen:
>
> i) Gilt für alle x [mm]\in[/mm] [-R, R] und alle |n| [mm]\ge[/mm] 2R
>
> |x-n| [mm]\ge \frac{|n|}{2}[/mm]
>
> wegen [mm]\frac{|n|}{2} \le[/mm] |n|
>
> und |n| [mm]\le[/mm] |x-n| eben für alle x [mm]\in[/mm] [-R, R], solange |n|
> [mm]\ge[/mm] 2R ist?
Hallo,
es ist [mm]|x|\le R=\frac{2R}{2}\le\frac{|n|}{2}[/mm] und daher [mm]|n-x|\ge|n|-|x|\ge|n|-\frac{|n|}{2}[/mm].
>
>
> ii) In dem Intervall [-R, R] kann sich doch auch eine ganze
> Zahl befinden. Wieso wird hier nicht die Restriktion
> eingebunden, dass [-R, R] keine ganze Zahl erhalten darf?
> Im allgemeinen Fall [a,b] [mm]\subset \IR[/mm] wird dies ja
> gefordert.
Es geht hier zunächst um die Summe über alle [mm]|n|\ge 2R[/mm]. Die Polstellen kommen erst ins Spiel, wenn auch die Summanden für [mm]|n|<2R[/mm] mit dazu genommen werden.
>
> -------------------
>
>
> 2) Periodizität und stetige Fortsetzbarkeit
>
> Behauptung: Für alle x [mm]\in \IR \backslash \IZ[/mm] gilt:
> [mm]\summe_{n\in\IZ} \frac{1}{(x-n)^{2}}[/mm] = [mm](\frac{\pi}{sin(\pi x)})^{2}[/mm]
>
> Beweis: a) Wir zeigen dafür zunächst, dass die beide
> Seiten die Periode 1 haben, d.h. F(x) = F(x+1) für alle x
> [mm]\in \IR \backslash \IZ[/mm]
>
> (Hier habe ich die linke Seite verstanden)
> Die rechte Seite hat natürlich auch die Periode 1, denn
> [mm]sin\pi(x+1)[/mm] = [mm]-sin(\pi[/mm] x)
>
> Kurze Zwischenfrage Mit [mm]sin\pi(x+1)[/mm] = [mm]-sin(\pi[/mm] x) gilt doch
> nicht F(x) = F(x+1), sondern F(x+1) = -F(x). Wieso ist die
> Funktion dann auch periodisch mit Periode 1?
Doch, das Quadrat macht das Minus kaputt.
>
>
> b) Es wird nun gezeigt:
> Die Differenz aus linker und rechter Seite lässt sich
> stetig in alle Punkte n [mm]\in \IZ[/mm] fortsetzen. Wegen der
> Periodizität muss dies nur an der Stelle "0" gezeigt
> werden.
> Es lässt sich nach einem vorangegangenen Beispiel die
> Funktion [mm]\frac{1}{sin^{2}(x)}[/mm] - [mm]\frac{1}{x^{2}}[/mm] stetig nach
> 0 fortsetzen (mit dem Wert 1/3). Ersetzt man hier die
> Variable x durch [mm]\pi[/mm] x und multipliziert mit [mm]\pi^{2},[/mm] so
> erhält man, dass sich
>
> [mm](\frac{\pi}{sin \pi x})^{2}[/mm] - [mm]\frac{1}{x^{2}}[/mm]
>
> stetig in den Nullpunkt fortsetzen lässt (mit dem Wert
> [mm]\frac{\pi^{2}}{3}.[/mm] Daraus folgt aber die Behauptung, denn
>
> F(x) = [mm]\frac{1}{x^{2}}[/mm] + [mm]\summe_{|n| \ge 1} \frac{1}{(x-n)^{2}},[/mm]
>
> und die letzte Summe ist stetig im Nullpunkt.
>
>
> Nun meine Fragen dazu:
>
> Wieso erhält man aus
>
> > dass sich
>
> > [mm](\frac{\pi}{sin \pi x})^{2}[/mm] - [mm]\frac{1}{x^{2}}[/mm]
>
> > stetig in den Nullpunkt fortsetzen lässt (mit dem Wert
> [mm]\frac{\pi^{2}}{3}.[/mm]
> > Daraus folgt aber die Behauptung, denn
>
> > F(x) = [mm]\frac{1}{x^{2}}[/mm] + [mm]\summe_{|n| \ge 1} \frac{1}{(x-n)^{2}},[/mm]
>
> > und die letzte Summe ist stetig im Nullpunkt.
Die Stetigkeit der Summe für [mm]|n|\ge 1[/mm] und damit die Stetigkeit von [mm](\frac{\pi}{sin \pi x})^{2}}-F(x)[/mm] folgt aus dem vorher gezeigten.
>
> dass sich die Differenz aus rechter und linker Seite stetig
> in alle Punkte n [mm]\in \IZ[/mm] fortsetzen lässt?
>
Wegen der vorher gezeigten Perioditizität ist
[mm]\lim_{x\to n}F(x)=\lim_{x\to n}F(x-n)=\lim_{y\to 0}F(y)[/mm].
>
>
>
> Bin wie immer für Antworten dankbar!
>
> Viele Grüße,
> X3nion
>
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:40 Mi 09.08.2017 | Autor: | X3nion |
Hallo donquijote,
ich danke dir für deine Antworten und Erläuterungen zu meinen Fragen!
> Zur Konvergenz Sei R > 0 beliebig vorgegeben.
> Dann gilt für alle x $ [mm] \in [/mm] $ [-R, R] und alle |n| $ [mm] \ge [/mm] $ 2R
> |x-n| [mm] \ge \frac{|n|}{2}, [/mm] also [mm] \frac{1}{(x-n)^{2}} \le \frac{4}{n^{2}}.
[/mm]
Eine kurze Frage habe ich noch zu obigem: Wird also mit |n| [mm] \ge [/mm] 2R sichergestellt, dass x-n [mm] \not= [/mm] 0 ?
Viele Grüße,
X3nion
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:57 Do 10.08.2017 | Autor: | fred97 |
> Hallo donquijote,
> ich danke dir für deine Antworten und Erläuterungen zu
> meinen Fragen!
>
>
> > Zur Konvergenz Sei R > 0 beliebig vorgegeben.
> > Dann gilt für alle x [mm]\in[/mm] [-R, R] und alle |n| [mm]\ge[/mm] 2R
>
> > |x-n| [mm]\ge \frac{|n|}{2},[/mm] also [mm]\frac{1}{(x-n)^{2}} \le \frac{4}{n^{2}}.[/mm]
>
> Eine kurze Frage habe ich noch zu obigem: Wird also mit |n|
> [mm]\ge[/mm] 2R sichergestellt, dass x-n [mm]\not=[/mm] 0 ?
>
Ja, es ist |x| [mm] \le [/mm] R und |n| [mm] \ge [/mm] 2R
>
> Viele Grüße,
> X3nion
>
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:28 Fr 11.08.2017 | Autor: | X3nion |
> Ja, es ist |x| [mm]\le[/mm] R und |n| [mm]\ge[/mm] 2R
Hallo Fred und vielen Dank, mir ist nun alles klar!
Viele Grüße,
X3nion
|
|
|
|