www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGleichmäßige Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Gleichmäßige Konvergenz
Gleichmäßige Konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Konvergenz: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:16 Fr 03.10.2008
Autor: MathStudent1

Aufgabe
Die Funktionenfolge [mm] (f_{n}) [/mm] sei erklärt durch

[mm] f_{n}(x) [/mm] = [mm] \bruch{1}{1+x^{2n}} [/mm] , [mm] n\in\IN [/mm] , [mm] x\in\IR [/mm] .

a.) Bestimmen Sie die Grenzfunktion f(x).

b.) Untersuchen Sie, ob auf den Intervallen I = [0,1] und J = [mm] [\bruch{-1}{2},\bruch{1}{2}] [/mm] gleichmäßige Konvergenz vorilegt.

Hallo zusammen,

mir ist leider nicht ganz klar, ob ich diese Aufgabe richtig gelöst habe, da mir mein Ergebnis zu simpel vorkommt. Vielleicht könnt Ihr mir weiterhelfen. Ich habe also folgendes gerechnet:

a.) f(x) = 1, für |x| < 1 , f(x) = [mm] \bruch{1}{2}, [/mm] für |x| = 1 , f(x) = 0, für |x| > 1

b.) I = [0,1] :

[mm] \limes_{n\rightarrow\infty} [/mm] [ [mm] sup(x\inI) |f_{n}(x) [/mm] - f(x)| ] =
[mm] \limes_{n\rightarrow\infty} |f_{n}(1) [/mm] - f(1)| = [mm] \bruch{1}{2} [/mm] - [mm] \bruch{1}{2} [/mm] = 0

J = [mm] [\bruch{-1}{2},\bruch{1}{2}] [/mm] :

[mm] \limes_{n\rightarrow\infty} [/mm] [ [mm] sup(x\inJ) |f_{n}(x) [/mm] - f(x)| ] =
[mm] \limes_{n\rightarrow\infty} |f_{n}(\bruch{1}{2}) [/mm] - [mm] f(\bruch{1}{2})| [/mm] =
1 - 1 = 0

[mm] \Rightarrow [/mm] gleichmäßige Konvergenz

Es wäre toll, wenn Ihr mir helfen könntet.
Danke schonmal im Voraus.

Gruß Michael



        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Fr 03.10.2008
Autor: XPatrickX

Hey,

die Grenzfunktion hast du richtig gebildet.
Gucke sie dir nochmal genau an, und überlege dann, dass [mm] f_n [/mm] auf dem abgeschlossenen Intervall [0,1] gar nicht gleichmäßig konvergieren kann.


Grüße Patrick

Bezug
                
Bezug
Gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Fr 03.10.2008
Autor: MathStudent1

Achso, aber wie erkenne ich das denn? Sorry, hab das noch nicht so ganz verstanden, denn ich hab doch einfach nur die Formel für gleichmäßige Konvergenz verwendet, deshalb weiß ich nicht was ich anders machen soll...

Bezug
                        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Sa 04.10.2008
Autor: thane

Hallo,

wenn es um glm. Konvergenz geht und du den Verdacht hast, dass die Funktionen-Folge nicht glm. konvergiert solltest du dir eine Folge in deinem Intervall suchen (meist in Abhängigkeit von n) und schaun ob die Funktion auch damit gegen die Grenzfunktion läuft.

Als Beispiel  [mm] \bruch{1}{n} \in [/mm] $ [0,1] $. Also [mm] |f_{n}(\bruch{1}{n}) [/mm] - [mm] f(\bruch{1}{n})| [/mm]  nur als Idee.

Oder du nimmst den abstrakteren Weg, vorausgesetzt ihr habt schon ein paar Sätze, dann könnte es sehr nützlich sein sich die Grenzfunktion genauer anzuschaun im Bezug auf Stetigkeit.

Gruß,
Thane

Bezug
                        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Sa 04.10.2008
Autor: XPatrickX

Hi,

ich glaube aber du hast die Formel nicht richtig angewendet. Woher weißt du genau, dass bei 1 bzw. 1/2 das Supremum liegt? Du musst ja das Supremum der Differenz [mm] f_n-f [/mm] finden und nicht von den einzelnen Funktionen.

In [0,1] kann die Fkt. nicht glm. stetig sein, weil sich dann die Stetigkeit von [mm] f_n [/mm] auf f übertragen würde, dass ist aber hier nicht der Fall.

Bezug
        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Sa 04.10.2008
Autor: XPatrickX

Hi nochmal,

die gleichmäßige Konvergenz auf dem Intervall [mm] [-\frac{1}{2},\frac{1}{2}] [/mm] kann man m.E. am besten so zeigen:

[mm] ||f_n-f||=||\frac{1}{1+x^{2n}}-1||=||\frac{-x^{2n}}{1+x^{2n}}|| \to [/mm] 0, für [mm] n\to \infty, [/mm] da |x|<1.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]