www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Gleichung
Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:40 Fr 31.03.2006
Autor: Julia1989

Aufgabe
Auf unserem Wiederholungszettel befindet sich auch noch folgende Aufgabe:
Wie viel Liter Wasser mit einer Temperatur von 15 ° C muss man zu 2 Litern von 30° C zugeben, um 20 ° warmes Wasser zu erreichen?

Hier hab ich eigentlich gar keine Vorstellung wie, wie das gerechnet werden könnte.
Folgenden Versuch hab ich gemacht aber das ist nicht richtig:
X * 15 + 2 * 30 = 20
Kann mir jemand einen Tipp geben? Das wäre schön.
Julia

        
Bezug
Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Fr 31.03.2006
Autor: Leopold_Gast

Jede Temperatur geht mit dem Anteil ihres Volumens am Gesamtvolumen in die Mischtemperatur ein.

Wenn du also 4 Liter Wasser von 60° und 8 Liter Wasser von 90° hast, so erhältst du beim Zusammenschütten 12 Liter Wasser. 4 Liter von 12 Litern sind 4/12 oder 1/3. Daher gehen die 60° zu einem Drittel in die Mischtemperatur ein. Die restlichen 8 Liter machen 8/12, also 2/3 des Gesamtvolumens aus. Daher gehen die 90° zu zwei Dritteln in die Mischtemperatur [mm]\bar{T}[/mm] ein:

[mm]\bar{T} = \frac{4}{12} \cdot 60^{\circ} + \frac{8}{12} \cdot 90^{\circ} = \frac{1}{3} \cdot 60^{\circ} + \frac{2}{3} \cdot 90^{\circ} = 20^{\circ} + 60^{\circ} = 80^{\circ}[/mm]

Wie du siehst, liegt die Mischtemperatur näher bei den 90° als bei den 60°. Das ist ja auch logisch, da man vom 90°-Wasser doppelt so viel genommen hat wie vom 60°-Wasser.

Allgemein lautet die Formel für die Mischtemperatur [mm]\bar{T}[/mm], wenn man die Volumina [mm]V_1,V_2[/mm] mit den Temperaturen [mm]T_1,T_2[/mm] zusammenschüttet:

[mm]\bar{T} = \frac{V_1}{V_1 + V_2} \cdot T_1 + \frac{V_2}{V_1 + V_2} \cdot T_2[/mm]

Überzeuge dich noch einmal an dem Beispiel oben, daß du beim Einsetzen genau die dortige Rechnung bekommst.

Jetzt zu deiner Aufgabe.

Du kennst eines der beiden Volumina nicht, sagen wir: [mm]V_1 = x[/mm] unbekannt! Alles andere kennst du (Temperaturen in °C, Volumina in Litern):

[mm]V_1 = x \, , \ \ T_1 = 15 \, , \ \ V_2 = 2 \, , \ \ T_2 = 30 \, ; \ \ \ \bar{T} = 20[/mm]

Jetzt mußt du der Formel entsprechend die Gleichung aufstellen und lösen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]