www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Gleichung
Gleichung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:55 So 05.11.2006
Autor: nix19

Aufgabe
In dieser Aufgaben bezeichnen a, b, c stets ganze Zahlen, wobei a oder b von 0 verschieden sei.
a) Zeigen Sie: Falls die Gleichung ax + by = c eine Lösung besitzt, für die x und y ganzzahlig sind, so wird c vom größten gemeinsamen Teiler von a und b geteilt.

b) Geben Sie eine Gleichung ax + by = c an, die keine ganzzahligen Lösungen besitzt, obwohl a und b verschiedenes Vorzeichen haben.

c) Für a, b fest bezeichne M die Menge aller derjenigen ganzen Zahlen c mit c > 0, für die die Gleichung ax + by = c eine Lösung mit x, y ganzzahlig besitzt. Weiterhin sei [mm] \gamma [/mm] das kleinste Element von M.
Beweisen Sie, dass [mm] \gamma [/mm] gleich dem größten gemeinsamen Teiler von a und b ist.
Hinweis: Wegen Teil a) braucht man nur noch zu zeigen, dass [mm] \gamma [/mm] sowohl a als auch
b teilt (Wieso?). Um dies etwa für a einzusehen, beachte man, dass |a| aus M ist
(Wieso?) und dividiere |a| mit Rest durch [mm] \gamma. [/mm]

d) Folgern Sie aus Teil c), dass auch die Umkehrung von Teil a) gilt.

Wie löse ich die Aufgabe?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 So 05.11.2006
Autor: angela.h.b.


> In dieser Aufgaben bezeichnen a, b, c stets ganze Zahlen,
> wobei a oder b von 0 verschieden sei.
>  a) Zeigen Sie: Falls die Gleichung ax + by = c eine Lösung
> besitzt, für die x und y ganzzahlig sind, so wird c vom
> größten gemeinsamen Teiler von a und b geteilt.
>  
> b) Geben Sie eine Gleichung ax + by = c an, die keine
> ganzzahligen Lösungen besitzt, obwohl a und b verschiedenes
> Vorzeichen haben.
>  
> c) Für a, b fest bezeichne M die Menge aller derjenigen
> ganzen Zahlen c mit c > 0, für die die Gleichung ax + by =
> c eine Lösung mit x, y ganzzahlig besitzt. Weiterhin sei
> [mm]\gamma[/mm] das kleinste Element von M.
>  Beweisen Sie, dass [mm]\gamma[/mm] gleich dem größten gemeinsamen
> Teiler von a und b ist.
>  Hinweis: Wegen Teil a) braucht man nur noch zu zeigen,
> dass [mm]\gamma[/mm] sowohl a als auch
>  b teilt (Wieso?). Um dies etwa für a einzusehen, beachte
> man, dass |a| aus M ist
>  (Wieso?) und dividiere |a| mit Rest durch [mm]\gamma.[/mm]
>  
> d) Folgern Sie aus Teil c), dass auch die Umkehrung von
> Teil a) gilt.


Hallo,

[willkommenmr].


>  Wie löse ich die Aufgabe?

Was hast Du bisher getan? Was ist unklar, wo hängst Du fest?
Wir können Dir besser und schneller helfen, wenn wir wissen, wo's klemmt.
Lies hierzu auch die Forenregeln.

Zu a)  Gehe davon aus, daß x,y die Gleichung lösen.
a und b haben einen ggT, dieser sei T. Wie kannst Du a und b dann schreiben, was bedeutet das für die Gleichung?

Zu b) ergibt sich dann direkt durch konkrete Anwendung von a)

Gruß v. Angela

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]