www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Gleichung
Gleichung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung: Lösen einer Gleichung
Status: (Frage) beantwortet Status 
Datum: 16:37 So 06.04.2008
Autor: margitbrunner

Aufgabe
Lösen sie die folgende Gleichung:

a+b+c = 7
-ac-ab-bc = 16
abc = 112

Ich hab schon stundenlang an der Gleichung rumgerechnet, komm aber auf keine Lsg. Mit dem Gauß-Verfahren gehts ja leider auch nicht. Wie kann ich diese Gleichung am besten lösen ??
Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 So 06.04.2008
Autor: Somebody


> Lösen sie die folgende Gleichung:
>  
> a+b+c = 7
>  -ac-ab-bc = 16
>  abc = 112
>  Ich hab schon stundenlang an der Gleichung rumgerechnet,
> komm aber auf keine Lsg. Mit dem Gauß-Verfahren gehts ja
> leider auch nicht.

Richtig: dieses Gleichungssystem ist nicht-linear.

> Wie kann ich diese Gleichung am besten
> lösen ??

Einsetzungsverfahren: indem Du zwei der Gleichungen verwendest, um die dritte zu einer Gleichung mit einer einzigen Variablen umzuformen. Du kannst z.B. aus der ersten Gleichung schliessen, dass [mm] $\blue{b+c}=\blue{7-a}$ [/mm] und aus der dritten, dass [mm] $\green{bc} [/mm] = [mm] \green{\frac{112}{a}}$ [/mm] ist. Einsetzen in die zweite Gleichung ergibt

[mm]\begin{array}{lcl} -ac-ab-bc &=& 16\\ -a(\blue{b+c})-\green{bc} &=& 16\\ -a\blue{(7-a)}-\green{\frac{112}{a}} &=& 16 \end{array}[/mm]

Nun diese Gleichung nach $a$ auflösen und dann schauen, was Du aus den anderen beiden Gleichungen (bei bekanntem $a$) für die Werte von $b$ und $c$ schliessen kannst.



Bezug
                
Bezug
Gleichung: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 So 06.04.2008
Autor: margitbrunner

Danke ich habs jeztzt so gemacht, wie dus beschrieben hast und hab auch die Lösung gefunden. a = 7, b = 4 und c = -4



Bezug
                        
Bezug
Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:45 So 06.04.2008
Autor: Somebody


> Danke ich habs jeztzt so gemacht, wie dus beschrieben hast
> und hab auch die Lösung gefunden. a = 7, b = 4 und c = -4
>  

Deine Lösung für $a$ wäre richtig, wenn die Bestimmungsgleichung für $a$ so lauten würde: [mm] $-a(7-a)-\frac{112}{a}=\red{-}16$. [/mm] Hattest Du dieses negative Vorzeichen vor $16$ vielleicht in Deiner ursprünglichen Frage "unterschlagen"?
Denn die Gleichung [mm] $-a(7-a)-\frac{112}{a}=\red{+}16$ [/mm] hat keine rationale Lösung.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]