www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Gleichung bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Gleichung bestimmen
Gleichung bestimmen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung bestimmen: Aufgabe 1
Status: (Frage) überfällig Status 
Datum: 16:59 Mo 02.11.2009
Autor: Katharinski

Aufgabe
Gleichung der Form [mm] a*(x+b)^2+c=d [/mm] nach x bestimmen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Kann mit vielleicht jemand helfen, wie ich diese Gleichung nach x umstelle?
Ich bekomm das trotz versuchens einfach nicht hin.
Das ist eine Zusatzaufgabe und wer es richtig hat bekommt eine 1 und diese könnte ich wirklich gut gebrauchen!!!
Liebe Grüße Katharinski

        
Bezug
Gleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Mo 02.11.2009
Autor: Steffi21

Hallo, für die 1 überlassen wir dir aber viel Arbeit,

- teile die Gleichung durch a [mm] (a\not=0) [/mm]
- löse die Binomische Formel [mm] (x+b)^{2} [/mm] auf
- stelle die Gleichung um, auf einer Seite der Gleichung steht Null
- benutze die p-q-Formel

Steffi


Bezug
        
Bezug
Gleichung bestimmen: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:17 Mo 02.11.2009
Autor: Katharinski

So blöd das auch klingt könnte mir vielleicht jemand die komplette Gleichung einmal aufschreiben???
Ich weiß nicht was es ist aber ich bekomme gerade gar nichts mehr auf die reihe...
Entschuldigung

Bezug
                
Bezug
Gleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mo 02.11.2009
Autor: M.Rex

Hallo

Du hast:

[mm] a\cdot{}(x+b)^2+c=d [/mm]
[mm] \gdw a(x^{2}+2bx+b^{2})+c=d [/mm]
[mm] \gdw ax^{2}+2abx+ab^{2}+c-d=0 [/mm]
[mm] \gdw x^{2}+\underbrace{2b}_{p}x+\underbrace{\bruch{ab^{2}+c-d}{a}}_{q}=0 [/mm]

Mehr Tipps gibts aber erstmal nicht.

Marius

Bezug
                
Bezug
Gleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Mo 02.11.2009
Autor: glie

Hallo,

alternativ kannst du das auch so machen:

[mm] $a*(x-b)^2+c=d$ [/mm]
[mm] $\gdw a*(x-b)^2=d-c$ [/mm]    teile jetzt durch $a$ (Bedingung [mm] $a\not=0$) [/mm]
[mm] $\gdw (x-b)^2=\bruch{d-c}{a}$ [/mm]

Jetzt ziehst du die Wurzel auf beiden Seiten. Beachte dabei aber folgendes:

1. Welche Bedingungen müssen die Variablen a,c und d erfüllen, so dass die Wurzel definiert ist.

2. Es gilt: [mm] $\wurzel{(x-b)^2}=|x-b|$ [/mm]

Du erhältst also:

[mm] $|x-b|=\wurzel{\bruch{d-c}{a}}$ [/mm]

Jetzt müsstest du nur noch den Betrag auflösen.

Gruß Glie

Bezug
        
Bezug
Gleichung bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Fr 06.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]