www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGleichung der Ortskurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Gleichung der Ortskurve
Gleichung der Ortskurve < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung der Ortskurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Sa 26.04.2008
Autor: Shire

Aufgabe
[mm] f_{a}(x)=\bruch{x^{2}}{x+a} [/mm]

Jeder Graph der Funktion [mm] f_{a} [/mm] besitzt genau einen Tiefpunkt und für x<0 einen Hochpunkt. Berechnen Sie die Koordinaten dieser lokalen Extrempunkte und ermitteln Sie eine Gleichung der Ortskurve o der Hochpunkte.

Hallo,

die Koordinaten habe ich berechnet:
lok. Minimum bei (0;0)
lok. Maximum bei (-2a;-4a) Die Werte sind als richtig bestätigt.

Es ist mir schon fast peinlich zu fragen, aber wie berechnet man die Ortskurve...es ist zu lange her, als das ich mich erinnern könnte :S Irgendwas mit einsetzen...aber was, wie und wo?

Danke schon im Vorraus ;)

        
Bezug
Gleichung der Ortskurve: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Sa 26.04.2008
Autor: abakus


> [mm]f_{a}(x)=\bruch{x^{2}}{x+a}[/mm]
>  
> Jeder Graph der Funktion [mm]f_{a}[/mm] besitzt genau einen
> Tiefpunkt und für x<0 einen Hochpunkt. Berechnen Sie die
> Koordinaten dieser lokalen Extrempunkte und ermitteln Sie
> eine Gleichung der Ortskurve o der Hochpunkte.
>  Hallo,
>  
> die Koordinaten habe ich berechnet:
>  lok. Minimum bei (0;0)
>  lok. Maximum bei (-2a;-4a) Die Werte sind als richtig
> bestätigt.

Hallo,
Das Maximum liegt also bei
x=-2a und y=-4a.
Die Ortskurve wird durch eine Gleichung der Form y=f(x)=... beschrieben (und darin kommt kein a mehr vor).
Also:
Du hast ja eine Gleichung der Form y=..., nämlich
y=-4a.
Das a muss raus aus der Gleichung, das x muss rein in die Gleichung.
Dein Ziel: Ersetze a durch einen Term mit x (und das sollte bei x=-2a doch irgendwie zu machen sein...).
Viele Grüße
Abakus




>  
> Es ist mir schon fast peinlich zu fragen, aber wie
> berechnet man die Ortskurve...es ist zu lange her, als das
> ich mich erinnern könnte :S Irgendwas mit einsetzen...aber
> was, wie und wo?
>
> Danke schon im Vorraus ;)


Bezug
                
Bezug
Gleichung der Ortskurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:09 Sa 26.04.2008
Autor: Shire

o(x)=2x

Ich danke dir :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]