www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenGleichung der Punkte ermitteln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Gleichung der Punkte ermitteln
Gleichung der Punkte ermitteln < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung der Punkte ermitteln: Aufgeaben Hilfe
Status: (Frage) beantwortet Status 
Datum: 02:41 Do 06.10.2011
Autor: Alex900

Aufgabe
Wie lautet die Gleichung der durch die Punkte P1=(10;5;-1) und P2=(1;2;5) verlaufenden Geraden? Bestimmen Sie die Koordinaten der Mitte Q Von [mm] \vec P1 \vec P2 [/mm]

Die Lösung Lautet:

[mm] \vec r [/mm](P)= [mm] \vec r [/mm][mm] (\lambda)=[/mm] [mm] \vec r [/mm][mm] (P1)+\lambda[/mm] [mm]\vec P1\vec P2 [/mm] = [mm] \begin{pmatrix} 10-9\lambda \\5-3\lambda \\-1+6\lambda \end{pmatrix} [/mm]

Zum Punkt Q gehört Parameterwert [mm] \lambda [/mm] = 0,5:

[mm] \vec r [/mm](Q) = [mm] \vec r [/mm][mm] (\lambda=0,5) [/mm] = [mm] \begin{pmatrix} 10-4,5 \\5-1,5 \\-1+3 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 5,5 \\3,5 \\2 \end{pmatrix} [/mm] [mm] \Rightarrow [/mm] Q= (5,5;3,5;2)


Meine Frage:
-Wie kommt man auf den Wert von [mm] \lambda [/mm]
- Woher kommen die Werte; 9;3;6


Bitte erklärt mir das sehr ausführlich, ich habe da im Moment sehr große Schwierigkeiten, weil ich auf Grund von Erkrankung viel verpasst habe.

Vielen dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichung der Punkte ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 03:22 Do 06.10.2011
Autor: angela.h.b.


> Wie lautet die Gleichung der durch die Punkte P1=(10;5;-1)
> und P2=(1;2;5) verlaufenden Geraden? Bestimmen Sie die
> Koordinaten der Mitte Q Von [mm]\vec P1 \vec P2[/mm]
>  Die Lösung
> Lautet:

Hallo,

[willkommenmr].

>  
> [mm]\vec r [/mm](P)= [mm]\vec r[/mm][mm] (\lambda)=[/mm] [mm]\vec r[/mm][mm] (P1)+\lambda[/mm] [mm]\vec P1\vec P2[/mm] = [mm]\begin{pmatrix} 10-9\lambda \\ 5-3\lambda \\ -1+6\lambda \end{pmatrix}[/mm]

Für jedes [mm] \lambda, [/mm] welches Du hier einsetzt, erhältst Di einen Punkt der Geraden.

der Vektor [mm] \vektor{-9\\-3\\6} [/mm] ist der Verbindungsvektor von [mm] P_1 [/mm] und [mm] P_2, [/mm] der Vektor [mm] \overrightarrow{P_1P_2}. [/mm] Man errechnet ihn, indem man die Differenz der Ortsvektoren der beiden Punkte [mm] nimmt:\overrightarrow{P_1P_2}=\vec{r}(P_2)-\vec{r}(P_1). [/mm]


> Zum Punkt Q gehört Parameterwert [mm]\lambda[/mm] = 0,5:

Welchen Punkt bekommst Du, wenn Du [mm] \lambda=0 [/mm] einsetzt?
Den Ortsvektor von [mm] P_1, [/mm] denn an den Ortsvektor [mm] \vec{r}(P_1) [/mm] von [mm] P_1 [/mm] wird der Nullvektor [mm] 0*\overrightarrow{P_1p_2} [/mm] angeheftet.

Welchen Punkt bekommst Du, wenn Du [mm] \lambda=1 [/mm] einsetzt?
Den Ortsvektor von [mm] P_2, [/mm] denn an den Ortsvektor [mm] \vec{r}(P_2) [/mm] von [mm] P_2 [/mm] wird der Vektor [mm] 1*\overrightarrow{P_1p_2}=\overrightarrow{P_1p_2} [/mm] angeheftet.

Beides kannst Du natürlich auch einfach nachrechnen.
Überlege Dir nun, daß Du zur Mitte von [mm] P_1 [/mm] und [mm] P_2 [/mm] kommst, wenn Du an den Ortsvektor von [mm] P_1 [/mm] den halben Verbindungsvektor [mm] \overrightarrow{P_1p_2} [/mm] anklebst.
Daher kommt [mm] \lambda=0.5. [/mm]

Gruß v. Angela



>  
> [mm]\vec r [/mm](Q) = [mm]\vec r[/mm][mm] (\lambda=0,5)[/mm] = [mm]\begin{pmatrix} 10-4,5 \\ 5-1,5 \\ -1+3 \end{pmatrix}[/mm] = [mm]\begin{pmatrix} 5,5 \\ 3,5 \\ 2 \end{pmatrix}[/mm] [mm]\Rightarrow[/mm] Q= (5,5;3,5;2)
>  
>
> Meine Frage:
> -Wie kommt man auf den Wert von [mm]\lambda[/mm]
> - Woher kommen die Werte; 9;3;6
>  
> Bitte erklärt mir das sehr ausführlich, ich habe da im
> Moment sehr große Schwierigkeiten, weil ich auf Grund von
> Erkrankung viel verpasst habe.
>  
> Vielen dank
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]