www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGleichung lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Gleichung lösen
Gleichung lösen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:48 Di 10.05.2011
Autor: katrin10

Aufgabe
Finde ein x zwischen 0 und 16 mit der Eigenschaft [mm] 3^x \equiv [/mm] 15 (mod 17).

Hallo,
durch Ausprobieren habe ich herausgefunden, dass die Zahl 6 eine Lösung ist. Allerdings weiß ich nicht genau, wie ich dies rechnerisch zeigen kann. Zum Lösen von linearen diophantischen Gleichungen benutzt man den euklidischen Algorithmus, allerdings ist meine Gleichung nicht linear und mit der ggt-Berechnung von 3 und 17 kam ich auch nicht weiter.
Für einen Tipp wäre ich sehr dankbar.


        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Di 10.05.2011
Autor: rainerS

Hallo Katrin!

> Finde ein x zwischen 0 und 16 mit der Eigenschaft [mm]3^x \equiv 15 \pmod{17}[/mm].
>  Hallo,
> durch Ausprobieren habe ich herausgefunden, dass die Zahl 6
> eine Lösung ist. Allerdings weiß ich nicht genau, wie ich
> dies rechnerisch zeigen kann. Zum Lösen von linearen
> diophantischen Gleichungen benutzt man den euklidischen
> Algorithmus, allerdings ist meine Gleichung nicht linear
> und mit der ggt-Berechnung von 3 und 17 kam ich auch nicht
> weiter.
>  Für einen Tipp wäre ich sehr dankbar.

Es gibt tatsächlich keine einfache Methode, dieses x, den sogenannten []diskreten Logarithmus, auszurechnen. Eine einfache Lösung dieses Problems würde eine ganze Reihe wichtiger kryptografischer Methoden unsicher machen.

Viele Grüße
   Rainer

Bezug
                
Bezug
Gleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Di 10.05.2011
Autor: katrin10

Vielen Dank für die schnelle Antwort.

Bezug
        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Di 10.05.2011
Autor: abakus


> Finde ein x zwischen 0 und 16 mit der Eigenschaft [mm]3^x \equiv[/mm]
> 15 (mod 17).
>  Hallo,
> durch Ausprobieren habe ich herausgefunden, dass die Zahl 6
> eine Lösung ist. Allerdings weiß ich nicht genau, wie ich
> dies rechnerisch zeigen kann. Zum Lösen von linearen
> diophantischen Gleichungen benutzt man den euklidischen
> Algorithmus, allerdings ist meine Gleichung nicht linear
> und mit der ggt-Berechnung von 3 und 17 kam ich auch nicht
> weiter.
>  Für einen Tipp wäre ich sehr dankbar.
>  

Hallo,
da 3 und 17 teilerfremd sind, kommen von [mm] 3^1 [/mm] bis [mm] 3^{16} [/mm] alle möglichen Reste von 1 bis 16 (nicht in dieser Reihenfolge) jeweils genau einmal vor.
Es ist einfach etwas Fleißarbeit in einem überschaubaren Rahmen.
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]