www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesGleichung mit Norm auflösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Gleichung mit Norm auflösen
Gleichung mit Norm auflösen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung mit Norm auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:46 Di 10.04.2007
Autor: keinPlan

es geht um die Gleichung:

[mm] \frac{A^t * A * x}{||Ax||} [/mm] + [mm] B^t [/mm] * c  = 0

wobei A und B Matrizen sind und x ein VEKTOR...

Ich komme halt einfach nicht mit der Norm klar. Ich weiß nicht, wie ich diese Norm im Nenner auflösen oder abschätzen soll...


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Gleichung mit Norm auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Di 10.04.2007
Autor: M.Rex

Hallo

> es geht um die Gleichung:
>  
> [mm]\frac{A^t * A * x}{||Ax||}[/mm] + [mm]B^t[/mm] * c  = 0
>  
> wobei A und B Matrizen sind und x ein VEKTOR...
>  

Schreib das doch mal um.

[mm] \frac{A^t*A*x}{||Ax||}=\bruch{1}{\parallel{Ax}\parallel}*(A^{t}*A*\vec{x}). [/mm] Also erst die Matrizen multiplizieren, und dann mit der Zahl [mm] \bruch{1}{\parallel{Ax}\parallel} [/mm] multiplizieren.

Marius

Bezug
                
Bezug
Gleichung mit Norm auflösen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:38 Di 10.04.2007
Autor: keinPlan

x ist unbekannt und ich möchte im endeffekt irgendwann da stehen haben:

x = .....

sodass ich mit dem Ergebnis weiterarbeiten kann!

Bezug
                        
Bezug
Gleichung mit Norm auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 Di 10.04.2007
Autor: keinPlan

es handelt sich übrings um ene euklidische Norm!! also [mm] ||.||^2 [/mm]

Bezug
                        
Bezug
Gleichung mit Norm auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 Di 10.04.2007
Autor: M.Rex

Hallo

A ist nicht zufällig eine Orthogonale Matrix. Dann würde nämlich gelten

[mm] A^{t}=a^{-1}, [/mm] also [mm] A^{t}*A=E [/mm]

Ansonsten musst du das "zu Fuss" ausrechnen.

Also

[mm] \frac{A^{t}*A*\vec{x}}{||Ax||}+B^{t}*c=0 [/mm]
[mm] \gdw\frac{A^{t}*A*\vec{x}}{||Ax||}=-(B^{t}*c) [/mm]
[mm] \gdw A^{t}*A*\vec{x}=-||Ax||*(B^{t}*c) [/mm]
[mm] \gdw \vec{x}=-||Ax||*(A^{t}*A)^{-1}(B^{t}*c) [/mm]
[mm] \gdw \bruch{\vec{x}}{||Ax||}=-(A^{t}*A)^{-1}(B^{t}*c) [/mm]

Kommst du damit weiter?

Marius





Bezug
                                
Bezug
Gleichung mit Norm auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Di 10.04.2007
Autor: keinPlan

A ist natürlich keine Einheitsmatrix :( Genau soweit wie du bin ich ja auch schon gekommen...

Bezug
                                        
Bezug
Gleichung mit Norm auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 Mi 11.04.2007
Autor: M.Rex

Es würde sogar reichen, wenn A eine orthogonale Matrix ist. Dann gilt:

[mm] A^{t}=a^{-1} [/mm] und somit:

[mm] A*A^{t}=E [/mm]

Marius

Bezug
                        
Bezug
Gleichung mit Norm auflösen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 12.04.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]