Gleichung nach x auflösen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:21 Do 28.06.2007 | Autor: | Mir.I.Am |
Aufgabe | Lösen Sie die Gleichung [mm] 1=4x^{3}-2x+2 [/mm] nach x auf. |
Salle,
Mein Ansatz sieht so aus:
[mm] 0=x(4x^{2}-2+1/x)
[/mm]
aber nun stecke ich fest. Hat jemand einen Vorschlag, wie ich weitermachen könnte? Hilft eventuell Substitution weiter (wobei ich nicht mehr genau weiß, wie Substitution funktioniert)?
Ich habe diese Frage in keinem anderen Forum gestellt.
|
|
|
|
Hallo Mir.I.Am,
die Lösung heißt Polynomdivision.
Bring die 1 auf die rechte Seite, rate eine Nullstelle und teile die rechte Seite durch (x-geratene Nullstelle). Funktioniert genauso wie das schriftliche Dividieren aus der 4. Klasse.
Grüße
Slartibartfast
ok, man sollte die Aufgabe erst mal anschauen bevor man groß erzählt. Ich seh grad, dass es nur eine Nullstelle gibt und die zu erraten ist unmöglich. Vllt hat jemand anders ne tolle Idee.
|
|
|
|
|
Hi, Miriam,
im Prinzip hat Slartibartfast ja Recht, aber in diesem Fall nützt Dir sein Tipp leider nichts, denn es gibt keine ganzzahlige Nullstelle.
Wenn Du Dich also nicht vertippt hast, bleibt Dir nichts anderes übrig, als die Nullstelle näherungsweise zu ermitteln (es sei denn, Du kennst die Formel von Cardano, aber das glaube ich eher nicht!).
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:53 Do 28.06.2007 | Autor: | Mir.I.Am |
Ok, danke vielmals euch beiden! Darauf, dass man ein Näherungsverfahren benutzen könnte, bin ich natürlich nicht gekommen. =)
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:38 Do 28.06.2007 | Autor: | Mir.I.Am |
Hey,
ich habe nun das Newtonverfahren angewandt und muss feststellen, dass es nicht klappt. Im Buch steht, dass die obige Aufgabe ein Nullstellenproblem ist, das mithilfe des Newtonverfahrens gelöst werden kann.
Ich habe leider keine Ahnung wie. Ich habe den Startwert [mm] x_{1}=-1.5 [/mm] genommen. Die Folge, die ich bekomme ist etwas verwirrend:
[mm] x_{2}=-1.169
[/mm]
[mm] x_{3}=-0.603
[/mm]
[mm] x_{4}=-1.274
[/mm]
[mm] x_{5}=-0.881
[/mm]
Ich habe die Aufgabe mit Maple gelöst und weiß daher, dass die richtige Antwort [mm] x_{5} [/mm] ist, also -0.88. Aber wieso springt das Newtonverfahren hier so umher und wie kann ich (wenn ich maple nicht benutzt hätte) erkennen, welche Lösung die richtige ist?
Ich habe diese Frage in keinem anderen Forum gestellt.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:58 Fr 29.06.2007 | Autor: | Kroni |
Hi,
guck dir mal diesen Link der Wikipedia an. Dort ist eine recht gelungene Animation zu sehen, wodurch die Nullstelle ermittelt wird.
Es ist so, dass man immer um die Nullstelle umherpendelt.
Hast du erst eine NS(Nullstelle) gefunden, die größer als die "echte" NS ist, so folgt darauf eine NS, die kleiner als die "echte" NS ist.
Daraufhin folgt wieder eine, die größer ist und so fort.
Wie du jetzt die "richtige" Nullstelle herausfindest?
Ich schätze, wenn du das Verfahren noch ein bis zweimal wiederholst, so wird der Unterschied zwischen den beiden Nullstellen, die einmal größer und einmal kleiner als die "echte" NS ist, nicht so groß ausfallen.
Das ist dann das Zeichen für dich: Ich bin fertig, und kann das Intervall angeben, indem die NS liegt.
LG
Kroni
|
|
|
|
|
Hi, Miriam,
Deine Werte erscheinen mir doch ungewöhnlich!
(1) Warum nimmst Du als Startwert -1,5 und nicht -1?!
(2) Da die Kurve im betreffenden Bereich echt mon. zunimmt, kommst Du m.E. auf jeden Fall "von links" (und nicht "alternierend") an die Nullstelle ran! M.E. liegen da einfach Rechenfehler vor!
mfG!
Zwerglein
|
|
|
|