www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesGleichung nach x auflösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis-Sonstiges" - Gleichung nach x auflösen
Gleichung nach x auflösen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung nach x auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Do 28.06.2007
Autor: Mir.I.Am

Aufgabe
Lösen Sie die Gleichung [mm] 1=4x^{3}-2x+2 [/mm] nach x auf.

Salle,
Mein Ansatz sieht so aus:
[mm] 0=x(4x^{2}-2+1/x) [/mm]
aber nun stecke ich fest. Hat jemand einen Vorschlag, wie ich weitermachen könnte? Hilft eventuell Substitution weiter (wobei ich nicht mehr genau weiß, wie Substitution funktioniert)?

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Gleichung nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Do 28.06.2007
Autor: Slartibartfast

Hallo Mir.I.Am,

die Lösung heißt Polynomdivision.
Bring die 1 auf die rechte Seite, rate eine Nullstelle und teile die rechte Seite durch (x-geratene Nullstelle). Funktioniert genauso wie das schriftliche Dividieren aus der 4. Klasse.

Grüße
Slartibartfast


ok, man sollte die Aufgabe erst mal anschauen bevor man groß erzählt. Ich seh grad, dass es nur eine Nullstelle gibt und die zu erraten ist unmöglich. Vllt hat jemand anders ne tolle Idee.

Bezug
        
Bezug
Gleichung nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 28.06.2007
Autor: Zwerglein

Hi, Miriam,

im Prinzip hat Slartibartfast ja Recht, aber in diesem Fall nützt Dir sein Tipp leider nichts, denn es gibt keine ganzzahlige Nullstelle.
Wenn Du Dich also nicht vertippt hast, bleibt Dir nichts anderes übrig, als die Nullstelle näherungsweise zu ermitteln  (es sei denn, Du kennst die Formel von Cardano, aber das glaube ich eher nicht!).

mfG!
Zwerglein

Bezug
                
Bezug
Gleichung nach x auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Do 28.06.2007
Autor: Mir.I.Am

Ok, danke vielmals euch beiden! Darauf, dass man ein Näherungsverfahren benutzen könnte, bin ich natürlich nicht gekommen. =)

Bezug
                        
Bezug
Gleichung nach x auflösen: Näherungsverfahren
Status: (Frage) beantwortet Status 
Datum: 23:38 Do 28.06.2007
Autor: Mir.I.Am

Hey,
ich habe nun das Newtonverfahren angewandt und muss feststellen, dass es nicht klappt. Im Buch steht, dass die obige Aufgabe ein Nullstellenproblem ist, das mithilfe des Newtonverfahrens gelöst werden kann.
Ich habe leider keine Ahnung wie. Ich habe den Startwert [mm] x_{1}=-1.5 [/mm] genommen. Die Folge, die ich bekomme ist etwas verwirrend:
[mm] x_{2}=-1.169 [/mm]
[mm] x_{3}=-0.603 [/mm]
[mm] x_{4}=-1.274 [/mm]
[mm] x_{5}=-0.881 [/mm]
Ich habe die Aufgabe mit Maple gelöst und weiß daher, dass die richtige Antwort [mm] x_{5} [/mm] ist, also -0.88. Aber wieso springt das Newtonverfahren hier so umher und wie kann ich (wenn ich maple nicht benutzt hätte) erkennen, welche Lösung die richtige ist?

Ich habe diese Frage in keinem anderen Forum gestellt.

Bezug
                                
Bezug
Gleichung nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:58 Fr 29.06.2007
Autor: Kroni

Hi,

guck dir mal []diesen Link der Wikipedia an. Dort ist eine recht gelungene Animation zu sehen, wodurch die Nullstelle ermittelt wird.

Es ist so, dass man immer um die Nullstelle umherpendelt.

Hast du erst eine NS(Nullstelle) gefunden, die größer als die "echte" NS ist, so folgt darauf eine NS, die kleiner als die "echte" NS ist.
Daraufhin folgt wieder eine, die größer ist und so fort.

Wie du jetzt die "richtige" Nullstelle herausfindest?

Ich schätze, wenn du das Verfahren noch ein bis zweimal wiederholst, so wird der Unterschied zwischen den beiden Nullstellen, die einmal größer und einmal kleiner als die "echte" NS ist, nicht so groß ausfallen.

Das ist dann das Zeichen für dich: Ich bin fertig, und kann das Intervall angeben, indem die NS liegt.

LG

Kroni

Bezug
                                
Bezug
Gleichung nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Fr 29.06.2007
Autor: Zwerglein

Hi, Miriam,

Deine Werte erscheinen mir doch ungewöhnlich!

(1) Warum nimmst Du als Startwert -1,5 und nicht -1?!

(2) Da die Kurve im betreffenden Bereich echt mon. zunimmt, kommst Du m.E. auf jeden Fall "von links" (und nicht "alternierend") an die Nullstelle ran! M.E. liegen da einfach Rechenfehler vor!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]