www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Gleichung Überprüfung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Gleichung Überprüfung
Gleichung Überprüfung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung Überprüfung: +Potenzmenge
Status: (Frage) beantwortet Status 
Datum: 22:33 Sa 07.01.2006
Autor: masaat234

Hallo,

Hab da ein paar Aufgaben gerechnet

1.Lösungsmenge Bestimmen

x+8=x G=N ist nicht = x=x-8 (nicht erfüllbar L=())

2.
3(2x+5) =8+6x+7  G=Z ist  
6x +15 =8+6x+7 ist x=x  (allgemeingülktig L=(Z))

3.
x(x-6)=0 (ein Produkt gleich null wenn ...  nur lösbar nicht allgemeingültig) und L=(-6)

Ist das alles richtig und habe ich etwas vergessen (z.B bei der Lösungsmengenbestimmung)

2.Potenzmenge  Bilden

a)  A= ( ) (da steht nichts  drin ,also gibst auch nix zu bilden ,richtig??)
b)  B= (u)  PM=(u,u);(u,u,u)....   (ist das alles ??? ) richtig???

Ich weiss nicht so recht was von dieser Aufgabe zu halten ist ,Verwirrung ?

3.

[mm] \bruch{3}{x-5} [/mm] -  [mm] \bruch{5+2x}{x²-6x+5} [/mm] =  [mm] \bruch{-7}{x-1} [/mm]

Ist der Hauptnenner  x(x-1)*(x-5) ???


Grüße

masaat

        
Bezug
Gleichung Überprüfung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Sa 07.01.2006
Autor: mathmetzsch

Hallo

> Hallo,
>  
> Hab da ein paar Aufgaben gerechnet
>  
> 1.Lösungsmenge Bestimmen
>  
> x+8=x G=N ist nicht = x=x-8 (nicht erfüllbar L=())

G ist doch (wahrscheinlich) einfach die zugrunde liegende Grundmenge und  es gilt [mm] L\subseteq\IN=G. [/mm]
Und es gibt in [mm] \IN [/mm] keine Zahl x, für die obiges erfüllt ist. Das Stimmt!

>  
> 2.
>  3(2x+5) =8+6x+7  G=Z ist  
> 6x +15 =8+6x+7 ist x=x  (allgemeingülktig L=(Z))

Stimmt!

>  
> 3.
>  x(x-6)=0 (ein Produkt gleich null wenn ...  nur lösbar
> nicht allgemeingültig) und L=(-6)

Nein, gilt auch für x=0. Also L=(0;-6)

>  
> Ist das alles richtig und habe ich etwas vergessen (z.B bei
> der Lösungsmengenbestimmung)
>  
> 2.Potenzmenge  Bilden
>  
> a)  A= ( ) (da steht nichts  drin ,also gibst auch nix zu
> bilden ,richtig??)
>  b)  B= (u)  PM=(u,u);(u,u,u)....   (ist das alles ??? )
> richtig???

Die Potenzmenge ist die Menge aller Teilmengen einer Menge.
A ist leer. Die einzige Teilmenge der leeren Menge ist die leere Menge selber, also [mm] \mathcal{P}(A)= \{\emptyset\} [/mm]

Deine zweite Menge B besteht aus einem Element, nämlich u. Die Potenzmenge beinhaltet nun u selber und die leere Menge natürlich, also
[mm] \mathcal{P}(B)= \{\emptyset,\{u\}\} [/mm]

>  
> Ich weiss nicht so recht was von dieser Aufgabe zu halten
> ist ,Verwirrung ?
>  
> 3.
>
> [mm]\bruch{3}{x-5}[/mm] -  [mm]\bruch{5+2x}{x²-6x+5}[/mm] =  [mm]\bruch{-7}{x-1}[/mm]
>  
> Ist der Hauptnenner  x(x-1)*(x-5) ???

Nein, ist er nicht. Es genügt zunächst, den Hauptnenner der beiden Brüche links zu finden! Dieser ist natürlich gerade [mm] x^{2}-5x+6=(x-1)(x-5). [/mm] Es gilt also
[mm]\bruch{3}{x-5}[/mm] -  [mm]\bruch{5+2x}{x²-6x+5}[/mm] =  [mm]\bruch{-7}{x-1}[/mm]
[mm] \Rightarrow\bruch{3(x-1)}{(x-5)(x-1)}-[/mm] [mm]\bruch{5+2x}{x²-6x+5}[/mm]=[mm]\bruch{-7}{x-1}[/mm]

Jetzt kannst du diese zu einem Bruch zusammenfassen und nun die Nenner links und rechts hochmultiplizieren. Dann noch zusammenfassen und x ausrechnen!

Viele Grüße
Daniel

>  
>
> Grüße
>  
> masaat

Bezug
                
Bezug
Gleichung Überprüfung: Ergebnis-Probe-Problem
Status: (Frage) beantwortet Status 
Datum: 11:36 So 08.01.2006
Autor: masaat234

Hallo,

Bei Aufgabe 3. ist der HN (x-1)*(x-5)

also  zusammengefasst

[mm] \bruch{5x-8)}{(x-5)*(x-1)} [/mm] = - [mm] \bruch{7(x-5)}{(x-5)*(x-1)} [/mm] =5x-8  =- 7x+35 = 12x=43 =x=43/12 =3 7/12 ??

Ist das richtig ,irgendwie stimmt hier etwas nicht ?

Grüße
masaat

Bezug
                        
Bezug
Gleichung Überprüfung: Minuszeichen beachten!
Status: (Antwort) fertig Status 
Datum: 11:48 So 08.01.2006
Autor: Loddar

Hallo masaat!


Du hast beim Zusammenfassen auf der linken Seite das Minuszeichen vor dem 2. Bruch nicht konsequent angewandt.

[mm] $\bruch{3*(x-1)}{(x-5)*(x-1)}-\bruch{5+2x}{(x-1)*(x-5)} [/mm] \ = \ [mm] \bruch{3x-3-\red{(}5+2x\red{)}}{(x-1)*(x-5)} [/mm] \ = \ [mm] \bruch{3x-3-5\red{-}2x}{(x-1)*(x-5)} [/mm] \ = \ [mm] \bruch{x-8}{(x-1)*(x-5)}$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Gleichung Überprüfung: Vielen Dank..
Status: (Frage) beantwortet Status 
Datum: 12:00 So 08.01.2006
Autor: masaat234

Hallo,

Vielen Dank..hab schon zwei Stunden rumgerätselt ,endlich wieder Ruhe !

dann ist x=8 x ist x=8......

Grüße

masaat


Bezug
                                        
Bezug
Gleichung Überprüfung: Ergebnis nicht richtig!
Status: (Antwort) fertig Status 
Datum: 12:11 So 08.01.2006
Autor: Loddar

Hallo masaat!


Du hast vergessen, auch auf der rechten Seite den Hauptnenner zu bilden:

[mm] $\bruch{x-8}{(x-1)*(x-5)} [/mm] \ = \ [mm] \bruch{-7*\blue{(x-5)}}{(x-1)*\blue{(x-5)}}$ [/mm]

$x-8 \ = \ -7*(x-5)$

usw.


Gruß
Loddar


Bezug
                
Bezug
Gleichung Überprüfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:44 So 08.01.2006
Autor: piet.t

Hallo,

> Deine zweite Menge B besteht aus einem Element, nämlich u.
> Die Potenzmenge beinhaltet nun u selber und die leere Menge
> natürlich, also
>  [mm]\mathcal{P}(B)= \{\emptyset,u\}[/mm]

Kleine Bemerkung für Haarspalter (also Mathematiker ;-) ):
Die Potenzmenge ist immer eine Menge von Mengen, also besteht sie in diesem Fall aus der leeren Menge und der Menge, die u enthält:
[mm]\mathcal{P}(B)= \{\emptyset,\{u\}\}[/mm]

Gruß

piet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]